
© 2017 IBM Corporation

Linux-Kernel Memory Ordering: Help Arrives At Last!

Joint work with Jade Alglave, Luc Maranget, Andrea Parri, and Alan Stern

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Beaver Barcamp, April 8, 2017

© 2017 IBM Corporation2

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Overview

Who cares about memory models?

But memory-barrier.txt is incomplete!

Project history

Cat-language example: single-variable SC

Current status and demo

Not all communications relations are created equal

Rough rules of thumb

© 2017 IBM Corporation3

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Who Cares About Memory Models?

© 2017 IBM Corporation4

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example “Litmus Test”: Can This Happen?

Thread 0:
 WRITE_ONCE(*x0, 1);
 r1 = READ_ONCE(x1);

Thread 1:
 WRITE_ONCE(*x1, 1);

 r1 = READ_ONCE(x2);

Thread 2:
 WRITE_ONCE(*x2, 1);
 r1 = READ_ONCE(x0);

“Exists” Clause
 (0:r1=0 /\ 1:r1=0 /\ 2:r1=0)

litmus/manual/extra/sb+o-o+o-o.litmus

© 2017 IBM Corporation5

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example “Litmus Test”: All CPUs Can Reorder Earlier
Writes With Later Reads of Different Variables, So ...

Thread 0:
 WRITE_ONCE(*x0, 1);
 r1 = READ_ONCE(x1);

Thread 1:
 WRITE_ONCE(*x1, 1);

 r1 = READ_ONCE(x2);

Thread 2:
 WRITE_ONCE(*x2, 1);
 r1 = READ_ONCE(x0);

“Exists” Clause
 (0:r1=0 /\ 1:r1=0 /\ 2:r1=0)

litmus/manual/extra/sb+o-o+o-o.litmus

© 2017 IBM Corporation6

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example “Litmus Test”: … This Can Happen!!!

Thread 0:
 r1 = READ_ONCE(x1);
 WRITE_ONCE(*x0, 1);

Thread 1:
 r1 = READ_ONCE(x2);

 WRITE_ONCE(*x1, 1);

Thread 2:
 r1 = READ_ONCE(x0);
 WRITE_ONCE(*x2, 1);

“Exists” Clause
 (0:r1=0 /\ 1:r1=0 /\ 2:r1=0)

litmus/manual/extra/sb+o-o+o-o.litmus

© 2017 IBM Corporation7

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Another Example “Litmus Test”: Can This Happen?

Thread 0:
 WRITE_ONCE(*u0, 3);
 smp_store_release(x1, 1);

Thread 1:
 r1 = smp_load_acquire(x1);

 r2 = READ_ONCE(*v0);

Thread 2:
 WRITE_ONCE(*v0, 1);
 smp_mb();
 r2 = READ_ONCE(*u0);

“Exists” Clause
 (1:r2=0 /\ 2:r2=0 /\ 1:r1=1)

litmus/auto/C-LB-GWR+R-A.litmus

© 2017 IBM Corporation8

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Who Cares About Memory Models, and If So, Why???

Hoped-for benefits of a Linux-kernel memory model
–Memory-ordering education tool
–Core-concurrent-code design aid
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling

• For example, CBMC and Nidhugg (CBMC now part of rcutorture)

Likely drawbacks of a Linux-kernel memory model
–Extremely limited code size

• Analyze concurrency core of algorithm
• Maybe someday automatically identifying this core
• Perhaps even automatically stitch together multiple analyses (dream on!)

–Limited types of operations (no function call, structures, call_rcu(), …)
• Can emulate some of these
• We expect that tools will become more capable over time
• (More on this on a later slide)

© 2017 IBM Corporation9

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

But memory-barrier.txt is Incomplete!

© 2017 IBM Corporation10

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

But memory-barrier.txt is Incomplete!

 (The memory-barriers.txt file defines the kernel's memory
model)

The Linux kernel has left many corner cases unexplored
–David, Peter, Will, and I added cases as requested: Organic growth
–The Linux-kernel memory model must define many of them

Guiding principles:
–Strength preferred to weakness
–Simplicity preferred to complexity
–Support existing non-buggy Linux-kernel code (later slide)
–Be compatible with hardware supported by the Linux kernel (later slide)
–Support future hardware, within reason
–Be compatible with C11, where prudent and reasonable (later slide)
–Expose questions and areas of uncertainty (later slide)

• Which means not one but two memory models!

© 2017 IBM Corporation16

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Project Pre-History

© 2017 IBM Corporation17

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Project Prehistory

2005-present: C and C++ memory models
–Working Draft, Standard for Programming Language C++

2009-present: x86, Power, and ARM memory models
–http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

2014: Clear need for Linux-kernel memory model, but...
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

As a result, no takers

© 2017 IBM Corporation18

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Project Prehistory

2005-present: C and C++ memory models
–Working Draft, Standard for Programming Language C++

2009-present: x86, Power, and ARM memory models
–http://www.cl.cam.ac.uk/~pes20/weakmemory/index.html

2014: Clear need for Linux-kernel memory model, but...
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

As a result, no takers

Until early 2015

© 2017 IBM Corporation19

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Our Founder

© 2017 IBM Corporation20

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Our Founder

Jade Alglave, University College London and Microsoft Research

© 2017 IBM Corporation21

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Founder's First Act: Adjust Requirements

Strategy is what you are not going to do!

© 2017 IBM Corporation22

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Founder's First Act: Adjust Requirements

Strategy is what you are not going to do!

New Requirements:
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

© 2017 IBM Corporation23

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Founder's First Act: Adjust Requirements

Strategy is what you are not going to do!

New Requirements:
–Legacy code, including unmarked shared accesses
–Wide range of SMP systems, with varying degrees of documentation
–High rate of change: Moving target!!!

Adjustment advantage: Solution now feasible!
–No longer need to model all possible compiler optimizations...
–Optimizations not yet envisioned being the most difficult to model!!!
–Jade expressed the model in the “cat” language

• The “herd” tool uses the “cat” language to process concurrent code
fragments, called “litmus tests” (example next slides)

• Initially used a generic language called “LISA”, now C-like language
• (See next few slides for a trivial example..)

© 2017 IBM Corporation24

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Founder's Second Act: Create Prototype Model

And to recruit a guy named Paul E. McKenney (Apr 2015):
–Clarifications of less-than-rigorous memory-barriers.txt wording
–Full RCU semantics: Easy one! 2+ decades RCU experience!!! Plus:

• Jade has some RCU knowledge courtesy of ISO SC22 WG21 (C++)
• “User-Level Implementations of Read-Copy Update”, 2012 IEEE TPDS
• “Verifying Highly Concurrent Algorithms with Grace”, 2013 ESOP

© 2017 IBM Corporation25

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Founder's Second Act: Create Prototype Model

And to recruit a guy named Paul E. McKenney (Apr 2015):
–Clarifications of less-than-rigorous memory-barriers.txt wording
–Full RCU semantics: Easy one! 2+ decades RCU experience!!! Plus:

• Jade has some RCU knowledge courtesy of ISO SC22 WG21 (C++)
• “User-Level Implementations of Read-Copy Update”, 2012 IEEE TPDS
• “Verifying Highly Concurrent Algorithms with Grace”, 2013 ESOP

 Initial overconfidence meets Jade Alglave memory-model
acquisition process! (Dunning-Kruger effect in action!!!)

–Linux kernel uses small fraction of RCU's capabilities
• Often with good reason!

–Large number of litmus tests, with text file to record outcomes
–Followed up by polite but firm questions about why...
–For but one example...

© 2017 IBM Corporation26

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

C-RW-R+RW-G+RW-R.litmus

© 2017 IBM Corporation27

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

© 2017 IBM Corporation28

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

1. Any system doing this should have been strangled at birth
2. Reasonable systems really do this
3. There exist a great many unreasonable systems that really do this
4. A memory order is what I give to my hardware vendor!

© 2017 IBM Corporation29

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

Litmus-test header comment: “Paul says allowed since mid-June”
No matter what you said, I agreed at some point in time!

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

© 2017 IBM Corporation30

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Example RCU Litmus Test: Trigger on Weak CPUs?

void P0(void)

{

 rcu_read_lock();

 r1 = READ_ONCE(y);

 WRITE_ONCE(x, 1);

 rcu_read_unlock();

}

void P1(void)

{

 r2 = READ_ONCE(x);

 synchronize_rcu();

 WRITE_ONCE(z, 1);

}

void P2(void)

{

 rcu_read_lock();

 r3 = READ_ONCE(z);

 WRITE_ONCE(y, 1);

 rcu_read_unlock();

}

Litmus-test header comment: “Paul says allowed since mid-June”
No matter what you said, I agreed at some point in time!

And this wasn't the only litmus test causing me problems!!!

synchronize_rcu() waits for pre-existing readers

BUG_ON(r1 == 1 && r2 == 1 && r3 == 1);

© 2017 IBM Corporation31

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

RCU Litmus Test Can Trigger on Weak CPUs
“This Cycle is Allowed”

void P0(void)
{
 rcu_read_lock();
 WRITE_ONCE(x, 1);

 r1 = READ_ONCE(y);
 rcu_read_unlock();
}

void P1(void)
{

 r2 = READ_ONCE(x);
 synchronize_rcu();
 /* wait */
 /* wait */
 /* wait */
 /* wait */
 WRITE_ONCE(z, 1);
}

void P2(void)
{

 rcu_read_lock();
 WRITE_ONCE(y, 1);

 r3 = READ_ONCE(z);
 rcu_read_unlock();
}

But don't take my word for it...

© 2017 IBM Corporation32

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

The Tool Agrees (Given Late-2016 Memory Model)

$ herd7 macros linux.def conf strong.cfg CRWR+RWG+RWR.litmus
Test auto/CRWR+RWG+RWR Allowed
States 8
0:r1=0; 1:r2=0; 2:r3=0;
0:r1=0; 1:r2=0; 2:r3=1;
0:r1=0; 1:r2=1; 2:r3=0;
0:r1=0; 1:r2=1; 2:r3=1;
0:r1=1; 1:r2=0; 2:r3=0;
0:r1=1; 1:r2=0; 2:r3=1;
0:r1=1; 1:r2=1; 2:r3=0;
0:r1=1; 1:r2=1; 2:r3=1;
Ok
Witnesses
Positive: 1 Negative: 7
Condition exists (0:r1=1 /\ 1:r2=1 /\ 2:r3=1)
Observation auto/CRWR+RWG+RWR Sometimes 1 7
Hash=0e5145d36c24bf7e57e9ef5f046716b8

© 2017 IBM Corporation35

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

At Summer's End...

 I create a writeup of RCU behavior

This results in general rule:
–If there are at least as many grace periods as read-side critical

sections in a given cycle, then that cycle is forbidden
• As in the earlier litmus test: Two critical sections, only one grace period

Jade calls this “principled”
–(Which is about as good as it gets for us Linux kernel hackers)
–But she also says “difficult to represent as a formal memory model”

However, summer is over, and Jade is out of time
–She designates a successor

© 2017 IBM Corporation36

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

At Summer's End...

 I create a writeup of RCU behavior

This results in general rule:
–If there are at least as many grace periods as read-side critical

sections in a given cycle, then that cycle is forbidden
• As in the earlier litmus test: Two critical sections, only one grace period

Jade calls this “principled”
–(Which is about as good as it gets for us Linux kernel hackers)
–But she also says “difficult to represent as a formal memory model”

However, summer is over, and Jade is out of time
–She designates a successor

But first, Jade produced the first demonstration that a Linux-
kernel memory model is feasible!!!

–And forced me to a much better understanding of RCU!!!

© 2017 IBM Corporation37

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Project Handoff: Jade's Successor

Luc Maranget, INRIA Paris (November 2015)

© 2017 IBM Corporation38

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

This Is Luc's First Exposure to RCU

© 2017 IBM Corporation39

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

This Is Luc's First Exposure to RCU

 It is my turn to use litmus tests as a form of communication
–Sample tests that RCU should allow or forbid

• Accompanied by detailed rationale for each
–Series of RCU “implementations” in litmus-test language (AKA “LISA”)

• With varying degrees of accuracy and solver overhead
• Some of which require knowing the value loaded before the load
• Which, surprisingly enough, is implementable in memory-model tools!

“Prophecy variables”, they are called
–Run Luc's models against litmus tests, return scorecard

• With convergence, albeit slow convergence

© 2017 IBM Corporation41

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Luc's Model Passes Most Litmus Tests

Luc: “I need you to break my model!”
–Need automation: Scripts generate litmus tests and expected outcome
–Currently at 2,722 automatically generated litmus tests to go with the

348 manually generated litmus tests
• Which teaches me about mathematical “necklaces” and “bracelets”

–Luc generated 1,879 more for good measure using the “diy” tool
–Moral: Validation is critically important in theory as well as in practice

But does the model match real hardware?
–As represented by formal memory models?
–As represented by real hardware implementations?
–There will always be uncertainty: Provide two models, strong and weak

© 2017 IBM Corporation42

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Luc's Model Passes Most Litmus Tests

Luc: “I need you to break my model!”
–Need automation: Scripts generate litmus tests and expected outcome
–Currently at 2,722 automatically generated litmus tests to go with the

348 manually generated litmus tests
• Which teaches me about mathematical “necklaces” and “bracelets”

–Luc generated 1,879 more for good measure using the “diy” tool
–Moral: Validation is critically important in theory as well as in practice

But does the model match real hardware?
–As represented by formal memory models?
–As represented by real hardware implementations?
–There will always be uncertainty: Provide two models, strong and weak
–And who is going to run all the tests???

© 2017 IBM Corporation43

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Luc's Model Passes Most Litmus Tests

Luc: “I need you to break my model!”
–Need automation: Scripts generate litmus tests and expected outcome
–Currently at 2,722 automatically generated litmus tests to go with the

348 manually generated litmus tests
• Which teaches me about mathematical “necklaces” and “bracelets”

–Luc generated 1,879 more for good measure using the “diy” tool
–Moral: Validation is critically important in theory as well as in practice

But does the model match real hardware?
–As represented by formal memory models?
–As represented by real hardware implementations?
–There will always be uncertainty: Provide two models, strong and weak
–And who is going to run all the tests???

But first: Luc produced first high-quality memory model for the
Linux kernel that included a realistic RCU model!!!

© 2017 IBM Corporation44

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Inject Hardware and Linux-Kernel Reality

Andrea Parri, Real-Time Systems Laboratory
Scuola Superiore Sant'Anna (January 2016)

© 2017 IBM Corporation45

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Large Conversion Effort

Created script to convert litmus test to Linux kernel module
–And then ran the result on x86, ARM, and PowerPC
–And on the actual hardware, just for good measure: Fun with types!!!

Helped Luc add support for almost-C-language litmus tests
–“r1 = READ_ONCE(x)” instead of LISA-code “r[once] r1 x”

Luc's infrastructure used to summarize results on the web
–Compare results of different models, different hardware, and different

litmus tests—extremely effective in driving memory-model evolution!

© 2017 IBM Corporation47

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Large Conversion Effort

Results look pretty good, but are we just getting lucky???
–Insufficient overlap between specialties!!!
–Way too easy for us to talk past each other

• Which would result in subtle flaws in the memory model
–Need bridge between Linux-kernel RCU and formal memory models

© 2017 IBM Corporation48

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Large Conversion Effort

Results look pretty good, but are we just getting lucky???
–Insufficient overlap between specialties!!!
–Way too easy for us to talk past each other

• Which would result in subtle flaws in the memory model
–Need bridge between Linux-kernel RCU and formal memory models

But first: Andrea developed and ran test infrastructure, plus
contributed directly to the Linux-kernel memory model!!!

© 2017 IBM Corporation49

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Bridging Between Linux Kernel and Formal Methods

Alan S. Stern, Rowland Institute at Harvard (February 2016)

© 2017 IBM Corporation50

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Alan's Background

Maintainer, Linux-kernel USB EHCI, OHCI, & UHCI drivers

© 2017 IBM Corporation51

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

A Bit More of Alan's Background

Maintainer, Linux-kernel USB EHCI, OHCI, & UHCI drivers

Education:
–Harvard University, A.B. (Mathematics, summa cum laude), 1979
–University of California, Berkeley, Ph.D. (Mathematics), 1984

Selected Publications:
–NMR Data Processing, Jeffrey C. Hoch and Alan S. Stern, Wiley-Liss,

New York (1996).
–“De novo Backbone and Sequence Design of an Idealized α/β-barrel

Protein: Evidence of Stable Tertiary Structure”, F. Offredi, F. Dubail, P.
Kischel, K. Sarinski, A. S. Stern, C. Van de Weerdt, J. C. Hoch, C.
Prosperi, J. M. Francois, S. L. Mayo, and J. A. Martial, J. Mol. Biol.
325, 163–174 (2003).

–“User-Level Implementations of Read-Copy Update”, Mathieu
Desnoyers, Paul E. McKenney, Alan S. Stern, Michel R. Dagenais, and
Jonathan Walpole, IEEE Trans. Par. Distr. Syst. 23, 375–382 (2012).

© 2017 IBM Corporation52

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

I Had Hoped That Alan Would Critique The Model

© 2017 IBM Corporation53

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

I Had Hoped That Alan Would Critique The Model
Which He Did—By Rewriting It (Almost) From Scratch

© 2017 IBM Corporation54

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Modeling RCU Read-Side Critical Sections

let matched = let rec

 unmatchedlocks = Rcu_read_lock \ domain(matched)

 and unmatchedunlocks = Rcu_read_unlock \ range(matched)

 and unmatched = unmatchedlocks | unmatchedunlocks

 and unmatchedpo = (unmatched * unmatched) & po

 and unmatchedlockstounlocks = (unmatchedlocks *

 unmatchedunlocks) & po

 and matched = matched | (unmatchedlockstounlocks \

 (unmatchedpo ; unmatchedpo))

 in matched

flag ~empty Rcu_read_lock \ domain(matched) as unbalancedrculocking

flag ~empty Rcu_read_unlock \ range(matched) as unbalancedrculocking

let crit = matched \ (po^1 ; matched ; po^1)

Handles multiple and nested critical sections
and also reports errors on mismatches!!!

And is an excellent example of “mutually assured recursion” design

© 2017 IBM Corporation55

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Modeling RCU's Grace-Period Guarantee

let rcuorder = hb* ; (rfe ; acqpo)? ; cpord* ; fre? ; propbase* ; rfe?

let gplink = sync ; rcuorder

let cslink = po ; crit^1 ; po ; rcuorder

let rcupath0 = gplink |

 (gplink ; cslink) |

 (cslink ; gplink)

let rec rcupath = rcupath0 |

 (rcupath ; rcupath) |

 (gplink ; rcupath ; cslink) |

 (cslink ; rcupath ; gplink)

irreflexive rcupath as rcu

Handles arbitrary critical-section/grace-period combinations,
and also interfaces to remainder of memory model

© 2017 IBM Corporation56

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Modeling RCU's Grace-Period Guarantee

Handles arbitrary critical-section/grace-period combinations,
and also interfaces to remainder of memory model

And all of this in only 24 lines of code!!!

let rcuorder = hb* ; (rfe ; acqpo)? ; cpord* ; fre? ; propbase* ; rfe?

let gplink = sync ; rcuorder

let cslink = po ; crit^1 ; po ; rcuorder

let rcupath0 = gplink |

 (gplink ; cslink) |

 (cslink ; gplink)

let rec rcupath = rcupath0 |

 (rcupath ; rcupath) |

 (gplink ; rcupath ; cslink) |

 (cslink ; rcupath ; gplink)

irreflexive rcupath as rcu

© 2017 IBM Corporation57

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Small Example of Cat Language: Single-Variable SC

© 2017 IBM Corporation58

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Small Example of Cat Language: Single-Variable SC

 “rf” relation connects write to reads returning the value written: Causal!

 “co” relation connects pairs of writes to same variable

 “fr” relation connects reads to later writes to same variable (fr = rf^1 ; co)

 “po-loc” relation connects pairs of accesses to same variable within given thread

 Result: Aligned machine-sized accesses to given variable are globally ordered

 Note: Full memory model is about 200 lines of code!

let com = rf | co | fr
let coherenceorder = poloc | com
acyclic coherenceorder

© 2017 IBM Corporation59

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Single-Variable SC Litmus Test

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

C-CO+o-o+o-o.litmus

© 2017 IBM Corporation60

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Single-Variable SC Litmus Test: rf Relationships

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

© 2017 IBM Corporation61

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Single-Variable SC Litmus Test: po-loc Relationships

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

p
o

-lo
c

p
o

-l
o

c

© 2017 IBM Corporation62

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Single-Variable SC Litmus Test: co Relationship

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

p
o

-lo
c, co p

o
-l

o
c

© 2017 IBM Corporation63

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Single-Variable SC Litmus Test: fr Relationships

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);

 rf

rf

p
o

-lo
c, co p

o
-l

o
c

fr

© 2017 IBM Corporation64

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Single-Variable SC Litmus Test: Acyclic Check

P0(void)

{

 WRITE_ONCE(x, 3);

 WRITE_ONCE(x, 4);

}

P1(void)

{

 r1 = READ_ONCE(x);

 r2 = READ_ONCE(x);

}

BUG_ON(r1 == 4 && r2 == 3);
Cycle, thus forbidden!

(Cycles are a generalization of memory-barrier pairing)

 rf

rf

p
o

-lo
c, co p

o
-l

o
c

fr

© 2017 IBM Corporation69

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Not All Communications Relations Are Created Equal

© 2017 IBM Corporation70

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Reads-From (rf) Relation

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 1;
X =

=
0 X =

=
1

rf

Time

© 2017 IBM Corporation71

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time!

CPU 0

CPU 1

CPU 2

CPU 3

X =
=

1

co
Time

WRITE_ONCE(x, 1);

X =
=

0

WRITE_ONCE(x, 2);
X =

=
2

© 2017 IBM Corporation73

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (1/7)

CPU 0

Store Buffer

Cache

x=0

CPU 3

Store Buffer

Cache

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation74

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (2/7)

CPU 0

Store Buffer

Cache

x=0

CPU 3

Store Buffer

x=2

Cache
Request cacheline x

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation75

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (3/7)

CPU 0

Store Buffer

x=1

Cache

x=0

CPU 3

Store Buffer

x=2

Cache
Request cacheline x

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation76

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (4/7)

CPU 0

Store Buffer

Cache

x=1

CPU 3

Store Buffer

x=2

Cache
Request cacheline x

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation77

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (5/7)

CPU 0

Store Buffer

Cache

CPU 3

Store Buffer

x=2

Cache
Respond with cacheline x = 1

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation78

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (6/7)

CPU 0

Store Buffer

Cache

CPU 3

Store Buffer

x=2

Cache

x=1
Respond with cacheline x = 1

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation79

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The Coherence (co) Relation Can
Go Backwards In Time! How Can This Happen? (7/7)

CPU 0

Store Buffer

Cache

CPU 3

Store Buffer

Cache

x=2

Writes are not instantaneous!

CPU 1 CPU 2

WRITE_ONCE(x, 1) WRITE_ONCE(x, 2)

© 2017 IBM Corporation80

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: But the Coherence (co) Relation
Goes Forward in Time Based on Cacheline!!!

CPU 0

CPU 1

CPU 2

CPU 3

X =
=

1

co

Time

WRITE_ONCE(x, 1);

X =
=

0

WRITE_ONCE(x, 2);
X =

=
2

© 2017 IBM Corporation81

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: But the Coherence (co) Relation
Goes Forward in Time Based on Cacheline!!!

CPU 0

CPU 1

CPU 2

CPU 3

X =
=

1

co

Time

WRITE_ONCE(x, 1);

X =
=

0

WRITE_ONCE(x, 2);
X =

=
2

But cacheline movement is not directly visible to normal SW!

© 2017 IBM Corporation82

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

We Therefore Think in Terms of the Coherence (co)
Relation Going Backwards In Time

CPU 0

CPU 1

CPU 2

CPU 3

X =
=

1

co
Time

WRITE_ONCE(x, 1);

X =
=

0

WRITE_ONCE(x, 2);
X =

=
2

© 2017 IBM Corporation83

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time!

CPU 0

CPU 1

CPU 2

CPU 3

WRITE_ONCE(x, 1);

r1 = READ_ONCE(x) == 0;
X =

=
0 X =

=
1

fr

Time

© 2017 IBM Corporation85

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (1/7)

CPU 0

Store Buffer

Cache

CPU 3

Store Buffer

Cache

x=0

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation86

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (2/7)

CPU 0

Store Buffer

x=1

Cache

CPU 3

Store Buffer

Cache

x=0
Request cacheline x

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation87

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (3/7)

CPU 0

Store Buffer

x=1

Cache

CPU 3

Store Buffer

Cache

x=0
Request cacheline x

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation88

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (4/7)

CPU 0

Store Buffer

x=1

Cache

CPU 3

Store Buffer

Cache

x=0
Request cacheline x

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation89

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (5/7)

CPU 0

Store Buffer

x=1

Cache

CPU 3

Store Buffer

Cache
Respond with cacheline x = 0

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation90

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (6/7)

CPU 0

Store Buffer

x=1

Cache

x=0

CPU 3

Store Buffer

Cache
Respond with cacheline x = 0

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation91

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Ordering vs. Time: The From-Reads (fr) Relation Can
Also Go Backwards In Time! (7/7)

CPU 0

Store Buffer

Cache

x=1

CPU 3

Store Buffer

Cache

Again, writes are not instantaneous!

CPU 1 CPU 2

WRITE_ONCE(x, 1) READ_ONCE(x)

© 2017 IBM Corporation94

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Moral: More rf Links, Lighter-Weight Barriers!!!

© 2017 IBM Corporation96

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

A Hierarchy of Litmus Tests: Rough Rules of Thumb

Dependencies and rf relations everywhere
–No additional ordering required

 If all rf relations, can replace dependencies with acquire
–Some architecture might someday also require release, so careful!

 If only one relation is non-rf, can use release-acquire
–Dependencies can sometimes be used instead of release-acquire
–But be safe – actually run the model to find out exactly what works!!!

 If two or more relations are non-rf, strong barriers needed
–At least one between each non-rf relation
–But be safe – actually run the model to find out exactly what works!!!

But for full enlightenment, see memory models themselves:
– http://www.rdrop.com/users/paulmck/scalability/paper/LCA-LinuxMemoryModel.2017.01.15a.tgz

© 2017 IBM Corporation98

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

How to Run Models

Download herd tool as part of diy toolset
–http://diy.inria.fr/sources/index.html

Build as described in INSTALL.txt
–Need ocaml v4.01.0 or better: http://caml.inria.fr/download.en.html

• Or install from your distro (easier and faster!)

Run various litmus tests:
– herd7 -conf strong.cfg litmus/auto/C-LB-GWR+R-A.litmus
– herd7 -conf strong.cfg C-RW-R+RW-Gr+RW-Ra.litmus
– herd7 -conf strong.cfg C-RW-R+RW-G+RW-R.litmus

Other required files:
– linux.def: Support pseudo-C code
– strong.cfg: Specify strong model
– strong-kernel.bell: “Bell” file defining events and relationships
– strong-kernel.cat: “Cat” file defining actual memory model
– *.litmus: Litmus tests

http://www.rdrop.com/users/paulmck/scalability/paper/LCA-LinuxMemoryModel.2017.01.15a.tgz

© 2017 IBM Corporation102

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Current Model Capabilities ...

READ_ONCE() and WRITE_ONCE()

smp_store_release() and smp_load_acquire()

 rcu_assign_pointer()

 rcu_dereference() and lockless_dereference()

 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu()
–Also synchronize_rcu_expedited(), but same as synchronize_rcu()

smp_mb(), smp_rmb(), smp_wmb(), and
smp_read_barrier_depends()

xchg(), xchg_relaxed(), xchg_release(), and xchg_acquire()

spin_trylock() and spin_unlock() prototypes in progress

© 2017 IBM Corporation103

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

… And Limitations

As noted earlier:
–Compiler optimizations not modeled
–No arithmetic
–Single access size, no partially overlapping accesses
–No arrays or structs (but can do trivial linked lists)
–No dynamic memory allocation
–Read-modify-write atomics: Only xchg() and friends for now
–No locking (but can emulate locking operations with xchg())
–No interrupts, exceptions, I/O, or self-modifying code
–No functions
–No asynchronous RCU grace periods, but can emulate them:

• Separate thread with release-acquire, grace period, and then callback code

© 2017 IBM Corporation104

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Summary

© 2017 IBM Corporation105

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Summary

We have automated much of memory-barriers.txt
–And more precisely defined much in it!
–Subject to change, but good set of guiding principles

First realistic formal Linux-kernel memory model

First realistic formal memory model including RCU

Hoped-for benefits:
–Memory-ordering education tool
–Core-concurrent-code design aid
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling

© 2017 IBM Corporation106

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Summary

We have automated much of memory-barriers.txt
–And more precisely defined much in it!
–Subject to change, but good set of guiding principles

First realistic formal Linux-kernel memory model

First realistic formal memory model including RCU

Hoped-for benefits:
–Memory-ordering education tool
–Core-concurrent-code design aid
–Ease porting to new hardware and new toolchains
–Basis for additional concurrency code-analysis tooling
–Satisfy those asking for it!!!

© 2017 IBM Corporation107

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

To Probe Deeper: Memory Models (1/2)

 “Simulating memory models with herd”, Alglave and Maranget (herd manual)
– http://diy.inria.fr/tst/doc/herd.html

 “Herding cats: Modelling, Simulation, Testing, and Data-mining for Weak Memory”, Alglave et al.
– http://www0.cs.ucl.ac.uk/staff/j.alglave/papers/toplas14.pdf

 Download page for herd: http://diy.inria.fr/herd/

 LWN article for herd: http://lwn.net/Articles/608550/ For PPCMEM: http://lwn.net/Articles/470681/

 Lots of Linux-kernel litmus tests: https://github.com/paulmckrcu/litmus

 “Understanding POWER Multiprocessors”, Sarkar et al.
– http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/pldi105-sarkar.pdf

 “Synchronising C/C++ and POWER”, Sarkar et al.
– http://www.cl.cam.ac.uk/~pes20/cppppc-supplemental/pldi010-sarkar.pdf

© 2017 IBM Corporation108

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

To Probe Deeper: Memory Models (2/2)

 “Modelling the ARMv8 Architecture, Operationally: Concurrency and ISA”, Flur et al.
– http://www.cl.cam.ac.uk/~pes20/popl16-armv8/top.pdf

 “A Tutorial Introduction to the ARM and POWER Relaxed Memory Models”, Maranget et al.
– http://www.cl.cam.ac.uk/~pes20/ppc-supplemental/test7.pdf

 “A better x86 memory model: x86-TSO”, Owens
– http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.153.6657&rep=rep1&type=pdf

 “A Framework for the Investigation of Shared Memory Systems”,Bart Van Assche et al.
– http://www.bartvanassche.be/publications/2000-csi.pdf

 Lots of relaxed-memory model information: http://www.cl.cam.ac.uk/~pes20/weakmemory/

 “Linux-Kernel Memory Model”, (informal) C++ working paper, McKenney et al.
– http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0124r2.html

© 2017 IBM Corporation109

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

To Probe Deeper: RCU
 Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

– http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
– http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

 McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
– http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
– http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

 McKenney: “Structured deferral: synchronization via procrastination”
– http://doi.acm.org/10.1145/2483852.2483867
– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 McKenney et al: “User-space RCU”
– https://lwn.net/Articles/573424/

 McKenney: “Requirements for RCU”
– http://lwn.net/Articles/652156/ http://lwn.net/Articles/652677/ http://lwn.net/Articles/653326/

 McKenney: “Beyond the Issaquah Challenge: High-Performance Scalable Complex
Updates”

– http://www2.rdrop.com/users/paulmck/RCU/Updates.2016.09.19i.CPPCON.pdf

 McKenney, ed.: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html

© 2017 IBM Corporation110

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Legal Statement

This work represents the view of the authors and does not
necessarily represent the view of their employers.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2017 IBM Corporation111

Beaver Barcamp Linux Kernel Memory Ordering, April 8, 2017

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 69
	Slide 70
	Slide 71
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 94
	Slide 96
	Slide 98
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

