
© 2014 IBM Corporation

Reordering and Verification in the Linux Kernel

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

Reorder Workshop, Vienna, Austria, July 17, 2014

© 2014 IBM Corporation2

Reorder Workshop, Vienna, Austria, July 17, 2014

Overview

Linux Kernel and Weak Ordering

What Is RCU?

Linux Kernel Validation: A Grand Challenge

Linux Kernel Validation State of the Art and Mitigations

Linux Kernel Validation: Future Possibilities

© 2014 IBM Corporation3

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel and Weak Ordering

© 2014 IBM Corporation4

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel and Weak Ordering

Split counters
–Each CPU increments is own counter to update, occasional statistical

readout sums all CPUs' counters: No ordering required

Memory allocator
–Fastpath has neither atomic instructions or memory barriers
–However, there are kfree()-to-kmalloc() requirements across CPUs

RCU
–More on this in the following slides...

© 2014 IBM Corporation5

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel and Weak Ordering

Split counters
–Each CPU increments is own counter to update, occasional statistical

readout sums all CPUs' counters: No ordering required

Memory allocator
–Fastpath has neither atomic instructions or memory barriers
–However, there are kfree()-to-kmalloc() requirements across CPUs

RCU
–More on this in the following slides...

Lots of opportunity for reordering in the Linux kernel!!!

© 2014 IBM Corporation6

Reorder Workshop, Vienna, Austria, July 17, 2014

What Is RCU?

© 2014 IBM Corporation7

Reorder Workshop, Vienna, Austria, July 17, 2014

Why RCU?

To accommodate the laws of physics
–And other trivial issues...

© 2014 IBM Corporation8

Reorder Workshop, Vienna, Austria, July 17, 2014

Speed of Light (to Say Nothing of Electrons) is Finite;
Size of Computers is Non-Zero

Upcoming
CPU Chip

12
.7

 m
m

12.7 mm

Source: http://en.wikipedia.org/wiki/List_of_upcoming_intel_processors

Diagonally across chip and back (35.8mm):
 3.6 clocks at 1GHz
17.9 clocks at 5GHz

Out for the request, back to return the data

http://en.wikipedia.org/wiki/List_of_upcoming_intel_processors

© 2014 IBM Corporation9

Reorder Workshop, Vienna, Austria, July 17, 2014

Problem With Physics #1: Finite Speed of Light

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2014 IBM Corporation10

Reorder Workshop, Vienna, Austria, July 17, 2014

Problem With Physics #2: Atomic Nature of Matter

(c) 2012 Melissa Broussard, Creative Commons Share-Alike

© 2014 IBM Corporation11

Reorder Workshop, Vienna, Austria, July 17, 2014

Performance of Synchronization Mechanisms

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

That 3.6 and 17.9 clocks now looks pretty good...That 3.6 and 17.9 clocks now looks pretty good...
Buffering, queueing and caching result in substantialBuffering, queueing and caching result in substantial
additional performance degradation!additional performance degradation!

© 2014 IBM Corporation12

Reorder Workshop, Vienna, Austria, July 17, 2014

But What Do The Operation Timings Really Mean???

Single instruction protected by contended lock

256.7 cycles

1
cycle

256.7 cycles

1
cycle

256.7 cycles

Uncontended

Contended,
No Spinning

256.7 cycles

1
cycle

256.7 cycles

Contended,
Spinning

??? cycles

258.7 CPUs
breaks even
w/single CPU!

514.4 CPUs
breaks even
w/single CPU!!!

A
rb

itr
ar

ily
 la

rg
e

nu
m

be
r

of
 C

P
U

s
to

 b
re

ak
 e

ve
n

w
ith

 s
in

gl
e

C
P

U
!!

!
N

ot
 s

o
go

od
 f

or
 r

ea
l-t

im
e!

!!

© 2014 IBM Corporation13

Reorder Workshop, Vienna, Austria, July 17, 2014

Also Applies to Reader-Writer Locking, Non-Blocking
Synchronization and Transactional Memory

Though read-only transactions can be heavily optimized,Though read-only transactions can be heavily optimized,
but not as heavily as RCU can.but not as heavily as RCU can.

© 2014 IBM Corporation14

Reorder Workshop, Vienna, Austria, July 17, 2014

Can't Hardware Do Better Than This???

There might be some ways to improve hardware:
–3D lithography: Too bad about power and heat dissipation!
–Extreme ultraviolet lithography: Making progress, but limited
–Liquid immersion lithography: Making progress, but limited
–Asynchronous logic: big in the '60s, starting to be used again
–Exotic materials (e.g., graphene): Promising, but still a research toy
–Light rather than electrons: Promising, but still a research toy
–Vacuum-channel transistors: Promising, but still a research toy
–Wormholes: Works great on Star Trek!!!
–Hyperspace: Works great on Star Wars!!!

Although hardware will continue to improve, software
needs to do its part: “Free lunch” exponential
performance improvement of 80s and 90s is over

© 2014 IBM Corporation15

Reorder Workshop, Vienna, Austria, July 17, 2014

How Can Software Live With This Hardware???

© 2014 IBM Corporation16

Reorder Workshop, Vienna, Austria, July 17, 2014

Two Basic Ways To Proceed...

Uncontended

Acquire

Release

Critical
Section

256.7 cycles

1
cycle

1: Reduce synchronization overhead

2: Increase critical section duration

We will focus on option #1, for readers.
(In real life, you need to do both.)

© 2014 IBM Corporation17

Reorder Workshop, Vienna, Austria, July 17, 2014

Design Principle: Avoid Expensive Operations

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)U

se
 c

he
ap

-a
nd

-c
he

er
fu

l o
pe

r a
tio

ns

© 2014 IBM Corporation18

Reorder Workshop, Vienna, Austria, July 17, 2014

Taking It To The Limit...

“Only those who have gone too far
can possibly tell you how far you can go!!!”

© 2014 IBM Corporation19

Reorder Workshop, Vienna, Austria, July 17, 2014

Taking It To The Limit...

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

© 2014 IBM Corporation20

Reorder Workshop, Vienna, Austria, July 17, 2014

Taking It To The Limit...

Lightest-weight conceivable read-side primitives
–/* Assume non-preemptible (run-to-block) environment. */
–#define rcu_read_lock()
–#define rcu_read_unlock()

Best possible performance, scalability, real-time
response, wait-freedom, and energy efficiency

But how can a primitive that doesn't affect machine
state possibly be a useful synchronization primitive?

© 2014 IBM Corporation21

Reorder Workshop, Vienna, Austria, July 17, 2014

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
a

llo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
(c

pt
r,

p)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
c e

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (next slide)
Safe for updates: inaccessible to all readers

readertmp tmp tmp

But if all we do is add, we have a big memory leak!!!But if all we do is add, we have a big memory leak!!!

© 2014 IBM Corporation22

Reorder Workshop, Vienna, Austria, July 17, 2014

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes element B from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free element B (kfree())

A

B

C

A

B

C

A

B

C

A

B

C

A

C
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we
possibly tell when they are done???possibly tell when they are done???

© 2014 IBM Corporation23

Reorder Workshop, Vienna, Austria, July 17, 2014

How Can RCU Tell When Readers Are Done???

That is, without re-introducing all of the overhead and latency That is, without re-introducing all of the overhead and latency
inherent to other synchronization mechanisms...inherent to other synchronization mechanisms...

© 2014 IBM Corporation24

Reorder Workshop, Vienna, Austria, July 17, 2014

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– Tasks holding pure spinlocks are not allowed to block due to deadlock issues
– Same rule for RCU readers, which are also not permitted to block

© 2014 IBM Corporation25

Reorder Workshop, Vienna, Austria, July 17, 2014

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– Tasks holding pure spinlocks are not allowed to block due to deadlock issues
– Same rule for RCU readers, which are also not permitted to block

 CPU context switch means all that CPU's prior readers are done

 Grace period ends after all CPUs execute a context switch

© 2014 IBM Corporation26

Reorder Workshop, Vienna, Austria, July 17, 2014

Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– Tasks holding pure spinlocks are not allowed to block due to deadlock issues
– Same rule for RCU readers, which are also not permitted to block

 CPU context switch means all that CPU's prior readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

list_del_rcu()

© 2014 IBM Corporation27

Reorder Workshop, Vienna, Austria, July 17, 2014

The Unanswered Question

But how can a primitive that doesn't affect machine state
possibly be a useful synchronization primitive?

© 2014 IBM Corporation28

Reorder Workshop, Vienna, Austria, July 17, 2014

The Unanswered Question

But how can a primitive that doesn't affect machine state
possibly be a useful synchronization primitive?

–The developer must not place synchronize_rcu() within an RCU read-
side critical section

–RCU synchronizes not via machine state, but rather the developer

© 2014 IBM Corporation29

Reorder Workshop, Vienna, Austria, July 17, 2014

The Unanswered Question

But how can a primitive that doesn't affect machine state
possibly be a useful synchronization primitive?

–The developer must not place synchronize_rcu() within an RCU read-
side critical section

–RCU synchronizes not via machine state, but rather the developer
–RCU achieves synchronization via social engineering!

© 2014 IBM Corporation30

Reorder Workshop, Vienna, Austria, July 17, 2014

Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); \
 ACCESS_ONCE(p) = (v); \
})
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

© 2014 IBM Corporation31

Reorder Workshop, Vienna, Austria, July 17, 2014

Toy Implementation of RCU on SC: 7 Lines of Code

void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

And some people still insist that RCU is complicated... ;-)

© 2014 IBM Corporation32

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel write() System Call: SELinux (Logscale)

Adding CPUs makes SELinux slower!!!

© 2014 IBM Corporation33

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel write() System Call: SELinux (RCU)

RCU provides linear scalabilty and order-of-magnitude improvements

© 2014 IBM Corporation34

Reorder Workshop, Vienna, Austria, July 17, 2014

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Unlikely to be the Right Tool For The Job, But It Can:

(1) Provide Existence Guarantees For Update-Friendly Mechanisms
(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

© 2014 IBM Corporation35

Reorder Workshop, Vienna, Austria, July 17, 2014

RCU Applicability to the Linux Kernel

© 2014 IBM Corporation36

Reorder Workshop, Vienna, Austria, July 17, 2014

RCU Applicability to the Linux Kernel

Which is great – but how are we validating all this???

© 2014 IBM Corporation37

Reorder Workshop, Vienna, Austria, July 17, 2014

To Probe Further Into RCU:
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination” (also in July 2013 CACM)
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy of Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

© 2014 IBM Corporation38

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation: A Grand Challenge

© 2014 IBM Corporation39

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation: A Grand Challenge

Suppose that there is an RCU bug that occurs on average
once every million years of execution time

© 2014 IBM Corporation40

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation: A Grand Challenge

Suppose that there is an RCU bug that occurs on average
once every million years of execution time

There are now more than one billion Linux kernel instances

© 2014 IBM Corporation41

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation: A Grand Challenge

Suppose that there is an RCU bug that occurs on average
once every million years of execution time

There are now more than one billion Linux kernel instances

Therefore this bug is exercised about three times per day
across the installed base!!!

© 2014 IBM Corporation42

Reorder Workshop, Vienna, Austria, July 17, 2014

Limits to Test-Based Validation

http://paulmck.livejournal.com/36150.html

© 2014 IBM Corporation43

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation State of the Art & Mitigations

© 2014 IBM Corporation44

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation Mitigations

Why are we getting reasonable reliability on 1G instances???
–At >15M lines of code, there are bugs
–Million-year bugs happen about three times per day
–And some bugs do get through

© 2014 IBM Corporation45

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation Mitigations

Why are we getting reasonable reliability on 1G instances???
–At >15M lines of code, there are bugs
–Million-year bugs happen about three times per day
–And some bugs do get through

The bulk of Linux's installed base has few CPUs
–Many SMP bugs found and fixed on larger server systems
–But the CPU counts of “small” embedded systems increasing

The bulk of Linux's installed base has predictable workload
–System testing can find most of the relevant bugs
–But smartphones are becoming general-purpose systems, which will

render system testing less effective

Fortunately lots of validation: testing and tooling!!!

© 2014 IBM Corporation46

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation Overview

Code review: 10,000 eyes
–Not that review has kept pace with change rate and complexity!
–From v3.11 to v3.12:

• 8636 files changed, 587981 insertions(+), 264385 deletions(-)

Unit/Stress tests
–rcutorture, locktest, kernbench, hackbench, ...
–Linux Test Project, Dave Jones's Trinity (quite effective lately)

Automated/recurring testing
–Stephen Rothwell's -next testing
–Fengguang Wu's kbuild test robot (see next slide)
–Frequent testing from many individuals and organizations

Tools: sparse, lockdep, coccinelle, smatch, ...

A big “Thank You!!!” to everyone helping with this!!!

© 2014 IBM Corporation47

Reorder Workshop, Vienna, Austria, July 17, 2014

Future Validation Needs: RCU Anecdotes

As with airplane safety, you need to look beyond bugs in use:
–“Near misses” caught by distro testing

• Recent day-1 RCU CPU stall warning bug (Michal Hocko &c)
• Shortcoming in my development methods: I need to take diagnostic code

more seriously
–“Near misses” caught by mainline testing

• Mid-2011 v3.0-rc7 RCU/interrupt/scheduler race
• RCU is becoming more intertwined with the rest of the kernel: I need to

work to increase the isolation between RCU and the rest of the kernel
–“Near misses” caught by my testing

• Late 2012 day-1 RCU initialization race
• See next slide...

That said, in RCU “day 1” is a slippery concept
–Three categories of statements in RCU remain from v2.6.12

© 2014 IBM Corporation48

Reorder Workshop, Vienna, Austria, July 17, 2014

Late 2012 “Day-1” RCU initialization Race

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 becomes associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 associates callback with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invokes callback, freeing A (too bad CPU 1 is still using it)

RCU reviewers are smart, but I cannot expect them to find this.

© 2014 IBM Corporation49

Reorder Workshop, Vienna, Austria, July 17, 2014

Linux Kernel Validation: Future Possibilities

© 2014 IBM Corporation50

Reorder Workshop, Vienna, Austria, July 17, 2014

Validation Via Model Checking

Formal methods sometimes used by practitioners:
–QRCU: http://lwn.net/Articles/243851/
–dyntick-idle: http://lwn.net/Articles/279077/
–Userspace RCU:

http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159
–NO_HZ_FULL_SYSIDLE also validated via Promela (twice!)

However, going from C to Promela not free of pitfalls
–Converting C to Promela on each release does not scale!
–Verifies design, yes, but useless for regression testing

And the need to use formal methods is often an indication
that some simpler method will soon be available

© 2014 IBM Corporation51

Reorder Workshop, Vienna, Austria, July 17, 2014

Validation Via Model Checking

Researchers' traditional focus:
–Full validation of all behaviors of the system

• Too bad a description of all behaviors can be as big as the system itself
–Strong ordering

• Too bad that all modern systems are weakly ordered, even x86
–Special-purpose languages (e.g., Promela/spin)

• Too bad that most parallel code is in general-purpose languages like C/C++

Richard Bornat, 2011:
–Our job is to validate the code developers write, in the environment

they write it in, and in the language that they write it.

A number of researchers have been taking this to heart
–Peter Sewell, Susmit Sarkar, Jade Alglave, Daniel Kroening, Michael

Tautschnig, Alexey Gotsman, Noam Riznetsky, Hongseok Yang, ...

© 2014 IBM Corporation52

Reorder Workshop, Vienna, Austria, July 17, 2014

Concurrency and Validation: Sewell & Sarkar's Group

Formalization of weak-memory models (x86, Power, ARM)
–http://lwn.net/Articles/470681/

Tools for full state-space search of concurrent code

PPC IRIW.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | sync | sync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

© 2014 IBM Corporation53

Reorder Workshop, Vienna, Austria, July 17, 2014

Concurrency and Validation: Sewell & Sarkar's Group

Extremely valuable tool
–Semi-definitive answers for atomic operations and memory barriers
–Explores every state that a real system could possibly enter
–Near production quality

Some shortcomings:
–Need to translate code to assembly language
–Does not handle arbitrary loops or arrays
–Only handles very small code sequences
–Applies to Power, ARM, C/C++11, but not generic Linux barriers
–~14 CPU-hours and ~10GB to validate example, 3.3MB of output

• Failures detected more quickly
• Omitting sync instructions detects failure in less than three CPU minutes
• And knowing in 14 hours is better than just not knowing!

 Important milestone in handling real-world parallelism

© 2014 IBM Corporation54

Reorder Workshop, Vienna, Austria, July 17, 2014

Validation Via Model Checking: Alglave, Kroening,
and Tautschnig

Programming languages might be Turing complete, but you can
get a long way with finite state machines: Any real system is FSM

Finite state machines represented by logic expressions
– Assertions can be tested with boolean satisfiabilty tester (SAT)
– Memory model captured (partially) as additional constraints

SAT is NP complete
– But full state-space searches are no picnic, either
– And much progress on SAT: million-variable problems now feasible

Easily scripted:

#!/bin/sh
gotocc o $1.goto $1.c
gotoinstrument wmm power $1.goto $1_power.goto
nthreads=`grep __CPROVER_ASYNC_ $1.c | wc l`
nthreads=`expr $nthreads + 1`
satabs concurrency fullinlining maxthreads $nthreads $1_power.goto

© 2014 IBM Corporation55

Reorder Workshop, Vienna, Austria, July 17, 2014

Multithreaded Model Checking: IRIW Example Input

int __unbuffered_cnt=0;
int __unbuffered_p0_EAX=0;
int __unbuffered_p0_EDX=0;
int __unbuffered_p1_EAX=0;
int __unbuffered_p1_EDX=0;
int x=0;
int y=0;

void * P0(void * arg) {
 __unbuffered_p0_EAX = x;
 asm("sync ");
 __unbuffered_p0_EDX = y;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

void * P1(void * arg) {
 __unbuffered_p1_EAX = y;
 asm("sync ");
 __unbuffered_p1_EDX = x;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

void * P2(void * arg) {
 x = 1;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

void * P3(void * arg) {
 y = 1;
 // Instrumentation for CPROVER
 asm("sync ");
 __unbuffered_cnt++;
}

© 2014 IBM Corporation56

Reorder Workshop, Vienna, Austria, July 17, 2014

Multithreaded Model Checking: IRIW Example Input

int main() {
 __CPROVER_ASYNC_0: P0(0);
 __CPROVER_ASYNC_1: P1(0);
 __CPROVER_ASYNC_2: P2(0);
 __CPROVER_ASYNC_3: P3(0);
 __CPROVER_assume(__unbuffered_cnt==4);
 assert(__unbuffered_p0_EAX==0 || __unbuffered_p0_EDX == 1 ||
 __unbuffered_p1_EAX==0 || __unbuffered_p1_EDX == 1);
 return 0;
}

© 2014 IBM Corporation57

Reorder Workshop, Vienna, Austria, July 17, 2014

Multithreaded Model Checking: IRIW Example Output

. . .

Statistics of refiner:
Invalid states requiring more than 1 passive thread: 2
Spurious assignment transitions requiring more than 1 passive thread: 0
Spurious guard transitions requiring more than 1 passive thread: 0
Total transition refinements: 48
Transition refinement iterations: 10

VERIFICATION SUCCESSFUL

Same result as cppmem, but much faster: 2.61 CPU seconds vs ~14 CPU hours
Omitting sync instructions slows down to 134 CPU seconds: larger expressions

© 2014 IBM Corporation58

Reorder Workshop, Vienna, Austria, July 17, 2014

But They Were Not Satisfied With This...

© 2014 IBM Corporation59

Reorder Workshop, Vienna, Austria, July 17, 2014

But They Were Not Satisfied With This...

“Herding cats: Modelling, simulation, testing, and data-mining for weak memory”
Alglave, Maranget, and Tautschnig, to appear in TOPLAS.

© 2014 IBM Corporation60

Reorder Workshop, Vienna, Austria, July 17, 2014

IRIW According to the “herd” Tool

. . .

2:r3=1; 2:r5=1; 3:r3=1; 3:r5=0;
2:r3=1; 2:r5=1; 3:r3=1; 3:r5=1;
No
Witnesses
Positive: 0 Negative: 15
Condition exists (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)
Observation IRIW Never 0 15
Hash=41423414f4e33c57cc1c9f17cd585c4d

Same result as cppmem and goto-cc/goto-instrument/satabs, but even faster:
16 milliseconds (vs. 2.61 CPU sec for goto... and ~14 CPU hours for ppcmem
You omitted the sync instructions? Still 16 milliseconds to validate failure!

Two orders of magnitude improvement over goto..., and six orders of magnitude
Improvement over ppcmem. So maybe the axiomatic approach is even better
use of SAT solvers! :-)

© 2014 IBM Corporation61

Reorder Workshop, Vienna, Austria, July 17, 2014

Tantalizing Possibilities

Might I add comments to Linux-kernel RCU marking sections
of code that can be formally verified?

–Rerun the verification on each release
–Or even as part of each testing cycle

What is needed to make this happen?
–Much better idea of the scope of the SAT-based and axiomatic formal

verification approaches
–Increased reliability of the formal verification software
–Scaffolding and assertions to be automatically incorporated

• Hopefully this can be a small matter of scripting

© 2014 IBM Corporation62

Reorder Workshop, Vienna, Austria, July 17, 2014

Summary

Linux kernel makes heavy use of weak ordering
–Split counters, memory allocators, RCU, …

Linux-kernel validation grand challenge:
–One billion instances: Million-year bugs happening three times per day!

Substantive validation technology:
–Per-commit build/boot/test, lock dependency checking, static analysis,

stress testing, occasional use of formal verification

 Important mitigation factors:
–Extensive testing on 4096 CPUs, real-time use, most of installed base

having few CPUs, …

But more is needed: Will I be able to add powerful formal
verification methods to my RCU validation suite?

© 2014 IBM Corporation63

Reorder Workshop, Vienna, Austria, July 17, 2014

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2014 IBM Corporation64

Reorder Workshop, Vienna, Austria, July 17, 2014

Questions?

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

