
IBM & Portland State University

PLOS 2007 (Revised) © 2006, 2007 IBM Corporation

Why The Grass May Not Be Greener On The Other Side:
A Comparison of Locking vs. Transactional Memory

Paul E. McKenney, IBM Linux Technology Center
Maged M. Michael, IBM TJ Watson Research
Jonathan Walpole, Portland State University

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Overview, Rationale, and Methodology

 Inexpensive multi-threaded/multi-core CPUs are here!
 Typical practitioner now must handle concurrency

• Exceptions include things like SQL
• In addition, economic considerations may intervene

 Transactional memory seen as one possible solution
• But need to compare fairly to existing mechanism: locking
• Comparison must cover all relevant attributes
• But balanced comparisons are difficult in “hot” fields like TM

 Methodology for balanced comparison:
• Maged Michael: strong NBS background, working with STM
• Paul McKenney: strong locking/RCU background
• Jon Walpole: versatile, strong conflict-resolution skills

 Any characterization of locking & TM that both Maged
and Paul agree with is necessarily well-balanced

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Background

 How Paul ended up working on this stuff

 Background (Paul's view)

• Hardware Characteristics

• Locking

• Reader-Writer Locking

• Non-Blocking Synchronization (NBS)

 Transactional Memory (TM) – consensus view

 What Paul really thinks

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

How Paul Ended Up Working on This Stuff

 Studied transactional memory in early 90s on own time
• But Sequent was not in a position to use this

 Was therefore tapped to help IBM Research in 2002
• Collaboration with Josep Torrellas

 Wrote RCU paper in 2006 on own time
• Rejected in late 2006 with particularly bizarre comments:

► “Might be interesting, suggest authors spend a couple of years gaining
experience with RCU so that they will have something useful to report”

• Thus answered a TM query more brusquely than normal
• Which got me labeled a TM skeptic, and thus selected as an

essential member of a within-IBM TM steering committee
• Given that the work was done, why not publish?

 So this work is the product of two of Paul's failed
investments in himself!!!

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Background (Paul's View)

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Not All Machine Instructions Are Created Equal

Operation Cost (ns) Ratio
Clock period 0.6
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0

4-CPU 1.8GHz AMD Opteron 844 system

Typical synchronization
mechanisms do this a lot

Heavily optimized reader-
writer lock might get here
for readers (but too bad

about those poor writers...)

Costs of atomic operations has improved, but how much more can we really get?

RCU

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Locking

 “Locks” associated with data
 To access a given piece of data, thread must hold the

corresponding lock
• Despite rumors to the contrary, reasonably easy to use, given global

visibility into and control of the code base (more on this later)

Thread 0

Thread 1

Acquire
Lock

Manipulate
Data

Release
Lock

Acquire
LockWait For Lock Manipulate

Data
Release

Lock

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Reader-Writer Locking

 “Locks” again associated with data
• To read a given piece of data, thread read-holds corresponding lock
• To modify a given piece of data, thread write-holds corresponding lock

Thread 0

Thread 1

Write-
Acquire

Lock

Manipulate
Data

Release
Lock

Wait For Lock
Read-

Acquire
Lock

Access
Data

Release
Lock

Thread 2 Wait For Lock
Read-

Acquire
Lock

Access
Data

Release
Lock

Why can't thread 1 & 2
lock at same time?

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Non-Blocking Synchronization (NBS)

 NBS can be thought of as “optimistic”

• Perform setup, then use atomic operations to do combination of
verification and (if passes) finalization
► If verification fails, rollback/retry or hand off, depending on type of NBS
► Note heavy use of atomic operations!!!

• Verification can be extremely complex
► Even when assuming mythical sequentially consistent computer systems

• Impact of contention can be quite severe

 NBS favored in 1990s research

• Some production use: simple NBS and “semi-NBS” (weaker
linearization and fault-tolerance properties)

• Research focus shifting to TM (see next slide)

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Transactional Memory (TM)

 Currently the focus of intense research effort

• So this slide is necessarily out of date

 Can be constructed to be either optimistic or pessimistic

struct foo *pop_push(struct foo_stack *src, struct foo_stack *dst)
{
 struct foo *q;

 begin_txn;
 q = src;
 src = q->next;
 q->next = dst;
 dst = q;
 end_txn;
}

src dst

S1 D1

S2

src dst

S2 S1

D1

What is not to like?

ato
m

ic

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

TM Does Not Suspend the Laws of Physics

 Costs shown below can be moved around depending on TM
implementation, but they are inherent
• Beginning, ending, and aborting transactions
• Adding a new object to a transaction
• Handling conflicts among transactions
• Or can accept transaction size limits with hardware implementation

 Reducing these overheads is a critical research challenge
 Ratio of data and control operation overheads challenging for TM

• DBMS: data operation usually includes reads/writes to mass storage device
• TM: data operations almost always includes only reads/writes to memory...

Thread 0

Thread 1

Begin
Txn

End
Txn

Begin
Txn

Manipulate
Data

End
Txn

Manipulate
Data

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Some TM Nomenclature

 TM: Transactional Memory
 HTM: Hardware Transactional Memory

• Requires additional instructions, thus new hardware
 STM: Software Transactional Memory
 UTM: Unbounded Transactional Memory

• Normally a hybrid using HTM for small transactions and STM for
large transactions, but there are also hardware-only approaches

 Log-based TM: create either an undo or redo log
• Undo log makes commit processing fast
• Redo log makes abort processing fast

 Inevitable transactions: designated transactions that are
not permitted to abort
• Paul's view: “Locks in transactional clothing”

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Locking and TM: Comparison and Status

Consensus View

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Locking and TM: Basics

Locking Transactional Memory

Basic Idea

Scope

Limited by deadlock.

Allow only one thread at a time
to access a given set of objects.

Cause a given operation over a set
of objects to execute atomically.

Idempotent and non-idempotent
operations.

Idempotent and non-concurrent
non-idempotent operations.

Concurrent non-idempotent opera-
tions require hacks.

Composability
Limited by non-idempotent opera-
tions and performance.

Scalability and
Performance

Data must be partitionable to
avoid lock contention.

Data must be partitionable to avoid
conflicts.

Partitioning typically must be
fixed at design time.

Dynamic adjustment of partitioning
carried out automatically.

Contention effects can be fo-
cused on acquisition and re-
lease, so that critical section
runs at full speed.

Contention effects can degrade
performance of processing within
the transaction.

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Locking and TM: Practical Applicability

Locking Transactional Memory

HW Support
Commodity hardware suffices.

SW Support

Yes. Yes.

Yes. Jury still out.

New hardware required, else per-
formance limited by STM.

Performance insensitive to de-
tails of cache geometry.

HTM performance depends critic-
ally on cache geometry.

APIs exist, large body of code
and experience, debuggers op-
erate naturally.

APIs emerging, little experience
outside of DBMS, breakpoints mid-
transaction can be problematic.

Practical ap-
plications exist

Wide applicabil-
ity

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Status of STM and HTM

 There are cases where STM works very well

• Scalability can overcome overhead penalty

• In some special cases, with as few as 4 CPUs

 In other cases, STM is more painful

• 20x or, in rare cases, 100x overhead vs. uncontended locking

• Some recent work makes more aggressive claims

 There are some indications that HTM falling back to STM
incurs significantly greater overhead than pure STM

• Hardware acceleration for STM?

 STM can be tailored for specific applications

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Where Do Locking and TM Fit In?

 Locking:
• Non-idempotent operations
• Large critical sections
• High performance on commodity hardware
• Good scalability given good engineering (Linux on 1024 CPUs)

► When data is statically partitionable
• Large body of successful practice and experience
• Excellent performance and scalability on read-mostly data

► In conjunction with RCU or hazard pointers

 TM:
• Large partitionable data structures that lack static partitionability
• Situations where no clear lock hierarchy exists (avoid deadlock)
• Single-threaded software with embarrassingly parallel core
• TM's applicability may increase if STM performance improves

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Conclusion: Use the Right Tool For The Job!!!

 There is no silver bullet: successful adoption of multi-
threaded/multi-core CPUs will require combination of techniques
• But don't take our word for it, ask the TxLinux guys ☺

 Analogy with engineering: How many types of fasteners are there?
 How many subtypes? Nail, screw, clip, bolt, glue, joint, magnet...

 Neither locking nor TM solve the fundamental performance and
scalability problems (later slides cover ease of use)
• STM struggling to achieve parity with uncontended locking, HTM performance

benefits over uncontended locking appear to be quite limited
► Which is a source of much amusement to those of us who have designed

and implemented deadlock-immune mechanisms more than an order of
magnitude faster than uncontended locking (RCU and Hazard Pointers)

 Future work: Relativistic Programming
• Formalize and generalize existing techniques such as RCU
• Integrate with other techniques: “use the right tool for the job”
• Combine performance, scalability, and ease of use
• Account for common hardware properties

► Allow hardware designers freedom to improve performance

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Corroboration From SOSP 2007 TxLinux Paper

 Tried transactions: 6-person-year effort, difficult change
• Brings doubts to TM ease-of-use claims...

 Used locking/transaction hybrid approach: 1 month
• Modest performance gains of ~2%

► Even with favorable-to-TxLinux single-cycle-per-instruction assumption
► Contrast with tens-of-percent and order-of-magnitude gains from other changes

• Locking required for I/O and runqueue locks
• Encountered priority inversion, requiring scheduler support
• Because TxLinux falls back to locking, deadlock can still arise

► “While this is unfortunate, deadlock is also a possibility for advanced transaction
models that allow open nesting.”

► Suggested solution: use single global lock for transactions that are unlikely to fail
► However, additional deadlock scenarios are generated by hybrid approach!!!
► Question: has TxLinux really delivered on the ease-of-programming TM promise?

 In short, TM is not immune to vicissitudes of large and complex
real-world software artifacts
• Question: suppose TxLinux team had instead applied HTM to a few key areas

in the Linux kernel where deadlock avoidance results in complex code?
► Might doing so result in a large removed-lines-of-code metric?

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Recent Work on TM

 “Inevitable Transactions”: special transactions
containing non-idempotent operations (I/O)
• Such transactions unconditionally abort any conflicting

transactions, thus non-idempotence is OK

• Allowing more than one concurrent inevitable transaction is
necessary to achieve reasonable I/O performance, but feasibility
is an open question
►Compiler might be able to prove that given groups of inevitable

transactions cannot conflict (see Maged's recent work)

 Might use inevitable transactions for real-time
• But many applications require large numbers of real-time

threads, and performance and scalability are critical

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Future Work

 Expand the comparison to include other synchronization
mechanisms (message passing, deferred reclamation,
RCU)

 Investigate combining different mechanisms:
• TM and locking (much work in this area)

• RCU and locking (typical use of RCU)

• TM and RCU (very little work done here)

 There might still be hope for a “silver bullet”

• But until then, it would be quite foolish to ignore
combinations of existing mechanisms

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

End of Balanced Presentation

What Paul Really Thinks

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

TM the Vision

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

TM the Reality: Non-Idempotent Operations

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

TM the Reality: Conflict-Prone Variables

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

TM the Reality: Real-Time Response

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Maged's and Paul's Summary

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Legal Statement

 This work represents the view of the author and does
not necessarily represent the view of IBM.

 IBM, IBM (logo), e-business (logo), pSeries, e (logo)
server, and xSeries are trademarks or registered
trademarks of International Business Machines
Corporation in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

IBM & Portland State University

© 2006, 2007 IBM CorporationPLOS 2007 (Revised)

Questions and Discussion

