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Overview

Before the Issaquah Challenge

The Issaquah Challenge

Aren't parallel updates a solved problem?

Special case for parallel updates
–Per-CPU/thread processing
–Read-only traversal to location being updated
–Existence-based updates

The Issaquah Challenge: One Solution
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Before the Issaquah Challenge
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Before the Issaquah Challenge: Double-Ended Queue

Can you create a trivial lock-based deque allowing concurrent 
pushes and pops at both ends?

–Coordination required if the deque contains only one or two elements
–But coordination is not required for three or more elements
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Before the Issaquah Challenge: Double-Ended Queue

Can you create a trivial lock-based deque allowing concurrent 
pushes and pops at both ends?

–Coordination required if the deque contains only one or two elements
–But coordination is not required for three or more elements

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A B C

Left
Head

Right
Head

A B

Left
Head

Right
Head

A Pointless problem, but
solution on later slide...
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Atomic Multi-Structure Update: Issaquah Challenge
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
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Atomic Multi-Structure Update: Issaquah Challenge

1 2 3 4 1 2 3 4

Atomically move element 1 from left to right tree
Atomically move element 4 from right to left tree
Without contention between the two move operations!
Hence, most locking solutions “need not apply”
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But Aren't Parallel Updates A Solved Problem?



© 2015 IBM Corporation11

Issaquah Challenge Distributed Operating Systems – TU Dresden, June 1, 2015

Parallel-Processing Workhorse: Hash Tables
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Perfect partitioning leads to perfect performance and stunning scalability!Perfect partitioning leads to perfect performance and stunning scalability!
In theory, anyway...In theory, anyway...
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Read-Mostly Workloads Scale Well,
Update-Heavy Workloads, Not So Much...

And the horrible thing?  Updates are all locking ops!
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But Hash Tables Are Partitionable!  # of Buckets?
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Hardware Structure and Laws of Physics

Electrons move at 0.03C to 0.3C in transistors and, so need locality of referenceElectrons move at 0.03C to 0.3C in transistors and, so need locality of reference
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Two Problems With Fundamental Physics...
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Problem With Physics #1: Finite Speed of Light

Observation by Stephen Hawking
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Problem With Physics #2: Atomic Nature of Matter

Observation by Stephen Hawking
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Read-Mostly Access Dodges The Laws of Physics!!!
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Read-only data remains replicated in all cachesRead-only data remains replicated in all caches
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Updates, Not So Much...
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but each update destroys other replicas!but each update destroys other replicas!
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“Doctor, it Hurts When I Do Updates!!!
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“Doctor, it Hurts When I Do Updates!!!

 “Then don't do updates!”
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“Doctor, it Hurts When I Do Updates!!!

 “Then don't do updates!”

 “But if I don't do updates, I run out of registers!”
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“Doctor, it Hurts When I Do Updates!!!

 “Then don't do updates!”

 “But if I don't do updates, I run out of registers!”

We have no choice but to do updates, but we clearly need to 
be very careful with exactly how we do our updates
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Update-Heavy Workloads Painful for Parallelism!!!
But There Are Some Special Cases...
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But There Are Some Special Cases

Per-CPU/thread processing (perfect partitioning)
–Huge number of examples, including the per-thread/CPU stack
–We will look at split counters

Read-only traversal to location being updated
–Key to solving the Issaquah Challenge

Trivial Lock-Based Concurrent Deque???
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Split Counters
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Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Increment only your own counter
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Split Counters Diagram

Counter 0

Counter 1

Counter 2

Counter 3

Counter 4

Counter 5

Sum all counters
While they continue changing
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Split Counters Lesson

Updates need not slow us down – if we maintain good locality

For the split counters example, in the common case, each 
thread only updates its own counter

–Reads of all counters should be rare
–If they are not rare, use some other counting algorithm
–There are a lot of them, see “Counting” chapter of “Is Parallel 

Programming Hard, And, If So, What Can You Do About It?”  
(http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html)
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Read-Only Traversal To Location Being Updated
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Why Read-Only Traversal To Update Location?

Consider a binary search tree

Classic locking methodology would:
1) Lock root
2) Use key comparison to select descendant
3) Lock descendant
4) Unlock previous node
5) Repeat from step (2)

The lock contention on the root is not going to be pretty!
–And we won't get contention-free moves of independent elements, so 

this cannot be a solution to the Issaquah Challenge
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And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

Quick overview, references at end of slideset.
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And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

Quick overview, references at end of slideset.
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And This Is Why We Have RCU!

 (You can also use garbage collectors, hazard pointers, reference 
counters, etc.)

 Design principle: Avoid expensive operations in read-side code

 Lightest-weight conceivable read-side primitives
/* Assume non-preemptible (run-to-block) environment. */
#define rcu_read_lock()
#define rcu_read_unlock()

 I assert that this gives the best possible performance, scalability, real-time 
response, wait-freedom, and energy efficiency

 But how can something that does not affect machine state possibly be 
used as a synchronization primitive???

Quick overview, references at end of slideset.
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RCU Addition to a Linked Structure
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RCU Safe Removal From Linked Structure
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But if readers leave no trace in memory, how can we But if readers leave no trace in memory, how can we 
possibly tell when they are done???possibly tell when they are done???

kf
re

e(
)



© 2015 IBM Corporation37

Issaquah Challenge Distributed Operating Systems – TU Dresden, June 1, 2015

RCU Waiting for Pre-Existing Readers: QSBR

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2
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Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to 
change machine state

–Instead, they act on the developer, who must avoid blocking within 
RCU read-side critical sections
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Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to 
change machine state

–Instead, they act on the developer, who must avoid blocking within 
RCU read-side critical sections

RCU is therefore synchronization via social engineering
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Synchronization Without Changing Machine State???

But rcu_read_lock() and rcu_read_unlock() do not need to 
change machine state

–Instead, they act on the developer, who must avoid blocking within 
RCU read-side critical sections

RCU is therefore synchronization via social engineering

As are all other synchronization mechanisms:
–“Avoid data races”
–“Access shared variables only while holding the corresponding lock”
–“Access shared variables only within transactions”

RCU is unusual is being a purely social-engineering approach
–But RCU implementations for preemptive environments do use 

lightweight code in addition to social engineering
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RCU Is Specialized, And Will Need Help...

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)
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Better Read-Only Traversal To Update Location
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Better Read-Only Traversal To Update Location

An improved locking methodology might do the following:
–rcu_read_lock()
–Traversal:

• Start at root without locking
• Use key comparison to select descendant
• Repeat until update location is reached
• Acquire locks on update location
• Do consistency checks, retry from root if inconsistent

–Carry out update
–rcu_read_unlock()

Eliminates contention on root node!

But need some sort of consistency-check mechanism...
–RCU protects against freeing, not necessarily removal
–“Removed” flags on individual data elements
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Deletion-Flagged Read-Only Traversal

 for (;;)
–rcu_read_lock()
–Start at root without locking
–Use key comparison to select descendant
–Repeat until update location is reached
–Acquire locks on update location
–If to-be-updated location's “removed” flag is not set:

• Break out of “for” loop
–Release locks on update location
–rcu_read_unlock()

Carry out update

Release locks on update location and rcu_read_unlock()
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Read-Only Traversal To Location Being Updated

Focus contention on portion of structure being updated
–And preserve locality of reference to different parts of structure

Of course, full partitioning is better!

Read-only traversal technique citations:
–Arbel & Attiya, “Concurrent Updates with RCU: Search Tree as an 

Example”, PODC'14 (very similar lookup, insert, and delete)
–McKenney, Sarma, & Soni, “Scaling dcache with RCU”, Linux Journal, 

January 2004
–And possibly: Pugh, “Concurrent Maintenance of Skip Lists”, University 

of Maryland Technical Report CS-TR-2222.1, June 1990
–And maybe also: Kung & Lehman, “Concurrent Manipulation of Binary 

Search Trees”, ACM TODS, September, 1980
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Issaquah Challenge: One Solution
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Locking Regions for Binary Search Tree

Same tree algorithm with a few existence-oriented annotations
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Possible Upsets While Acquiring Locks...
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What to do?
Drop locks and retry!!!
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Existence Structures
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Existence Structures

Solving yet another computer-science problem by adding an 
additional level of indirection...
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Example Existence Structure Before Switch
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Example Existence Structure After Switch

Existence

Existence

Existence
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Existence
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Existence
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Data
Structure A

Data
Structure B
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Existence Structure Definition

/* Existence-switch array. */
const int existence_array[4] = { 1, 0, 0, 1 };

/* Existence structure associated with each moving structure. */
struct existence {
        const int **existence_switch;
        int offset;
};

/* Existence-group structure associated with multi-structure change. */
struct existence_group {
        struct existence outgoing;
        struct existence incoming;
        const int *existence_switch;
        struct rcu_head rh;  /* Used by RCU asynchronous free. */
};
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0

1

Example Existence Structure: Abbreviation

Existence
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Data
Structure B
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But Levels of Indirection Are Expensive!

And I didn't just add one level of indirection, I added three!

But most of the time, elements exist and are not being moved

So represent this common case with a NULL pointer
–If the existence pointer is NULL, element exists: No indirection needed
–Backwards of the usual use of a NULL pointer, but so it goes!

 In the uncommon case, traverse existence structure as shown on 
the preceding slides

–Expensive, multiple cache misses, but that is OK in the uncommon case

There is no free lunch:
–With this optimization, loads need smp_load_acquire() rather than 

READ_ONCE(), ACCESS_ONCE(), or rcu_dereference()

Can use low-order pointer bits to remove two levels of indirection
–Kudos to Dmitry Vyukov for this trick, see next slide
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0

1

Example Existence Structure: Before Dmitry
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0

1

Example Existence Structure: After Dmitry

Existence | 0

Existence | 1

Existence
Switch 0/1

Data
Structure A

Data
Structure B



© 2015 IBM Corporation58

Issaquah Challenge Distributed Operating Systems – TU Dresden, June 1, 2015

Abbreviated Existence Switch Operation (1/6)

1 2 3 2 3 4

Initial state: First tree contains 1,2,3, second tree contains 2,3,4.
All existence pointers are NULL.
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Abbreviated Existence Switch Operation (2/6)

1 2 3

4 1

2 3 4

First tree contains 1,2,3, second tree contains 2,3,4.

0

1
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Abbreviated Existence Switch Operation (3/6)

1 2 3 4 1 2 3 4

After insertion, same: First tree contains 1,2,3, second tree contains 2,3,4.

0

1
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Abbreviated Existence Switch Operation (4/6)

1 2 3 4 1 2 3 4

After existence switch: First tree contains 2,3,4, second tree contains 1,2,3.
Transition is single store, thus atomic!  (But lookups need barriers in this case.)

1

0
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Abbreviated Existence Switch Operation (5/6)

1 2 3 4 1 2 3 4

Unlink old nodes and allegiance structure

0

0

1
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Abbreviated Allegiance Switch Operation (6/6)

2 3 4 1 2 3

After waiting a grace period, can free up existence structures and old nodes
And data structure preserves locality of reference!
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Existence Structures

Existence-structure reprise:
–Each data element has an existence pointer
–NULL pointer says “member of current structure”
–Non-NULL pointer references an existence structure

• Existence of multiple data elements can be switched atomically

But this needs a good API to have a chance of getting it right!
–Especially given that a NULL pointer means that the element exists!!!
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Existence APIs

 struct existence_group *existence_alloc(void);

 void existence_free(struct existence_group *egp);

 struct existence *existence_get_outgoing(struct existence_group *egp);

 struct existence *existence_get_incoming(struct existence_group *egp);

 void existence_set(struct existence **epp, struct existence *ep);

 void existence_clear(struct existence **epp);

 int existence_exists(struct existence **epp);

 int existence_exists_relaxed(struct existence **epp);

 void existence_switch(struct existence_group *egp);
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Existence Operations for Trees

 int tree_atomic_move(struct treeroot *srcp, struct treeroot *dstp,

                     int key, void **data_in)

 int tree_existence_add(struct treeroot *trp, int key,

                              struct existence *ep, void **data)

 int tree_existence_remove(struct treeroot *trp, int key,

                                 struct existence *ep)

 int tree_insert_existence(struct treeroot *trp, int key, void *data,

                          struct existence *node_existence, int wait)

 int tree_delete_existence(struct treeroot *trp, int key,

                                 void **data, void *matchexistence, int wait)

Same tree algorithm with a few existence-oriented annotations
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Pseudo-Code for Atomic Tree Move

 Allocate existence_group structure (existence_alloc())

 Add outgoing existence structure to item in source tree (existence_set())
–If operation fails, report error to caller

 Insert new element (with source item's data pointer) to destination tree 
with incoming existence structure (variant of tree_insert())

–If operation fails, remove existence structure from item in source tree, 
free and report error to caller

 Invoke existence_switch() to flip incoming and outgoing

 Delete item from source tree (variant of tree_delete())

 Remove existence structure from item in destination tree 
(existence_clear())

 Free existence_group structure (existence_free())
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Existence Structures: Performance and Scalability

100% lookups
Super-linear as expected based on range partitioning

(Hash tables about 3x faster)

80.5x

89.8x

CPPCON

LCA
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Existence Structures: Performance and Scalability

90% lookups, 3% insertions, 3% deletions, 3% full tree scans, 1% moves
(Workload approximates Gramoli et al. CACM Jan. 2014)

39.9x

40.0x

CPPCON

LCA
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Existence Structures: Performance and Scalability

100% moves (worst case)

7.1x
6.4x

3.7x

CPPCON

LCA

N4037
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Existence Structures: Performance and Scalability

100% moves: Still room for improvement! 
But at least we are getting positive scalability...

12.7x

29.2x

CPPCON

LCA
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Existence Structures: Towards Update Scalability

 “Providing perfect performance and scalability is like committing the perfect crime.  
There are 50 things that might go wrong, and if you are a genius, you might be able 
to foresee and forestall 25 of them.” – Paraphrased from Body Heat, with apologies to Kathleen 
Turner fans

 Issues thus far:
– Getting possible-upset checks right
– Non-scalable random-number generator
– Non-scalable memory allocator
– Node alignment (false sharing)
– Premature deletion of moved elements (need to remove allegiance!)
– Unbalanced trees (false sharing)
– User-space RCU configuration (need per-thread call_rcu() handling)
– Getting memory barriers correct (probably more needed here)
– Threads working concurrently on adjacent elements (false sharing)
– Need to preload destination tree for move operations (contention!)
– Issues from less-scalable old version of user-space RCU library
– More memory-allocation tuning
– Wakeup interface to user-space RCU library (instead of polling)
– More URCU tuning

 Next steps: More detailed profiling for poorly scaling scenarios
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Existence Advantages and Disadvantages

 Existence requires focused developer effort

 Existence specialized to linked structures (for now, anyway)

 Existence requires explicit memory management
– Might eventually be compatible with shared pointer, but not yet

 Existence-based exchange operations require linked structures that accommodate 
duplicate elements

– Current prototypes disallow duplicates

 Existence permits irrevocable operations

 Existence can exploit locking hierarchies, reducing the need for contention 
management

 Existence achieves semi-decent performance and scalability

 Existence's use of synchronization primitives preserves locality of reference

 Existence is compatible with old hardware

 Existence is a downright mean memory-allocator and RCU test case!!!
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When Might You Use Existence-Based Update?

We really don't know yet
–But similar techniques are used by Linux-kernel filesystems

Best guess is when one or more of the following holds and 
you are willing to invest significant developer effort to gain 
performance and scalability:

–Many small updates to large linked data structure
–Complex updates that cannot be efficiently implemented with single 

pointer update
–Need compatibility with hardware not supporting transactional memory
–Need to be able to do irrevocable operations (e.g., I/O) as part of data-

structure update
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Existence Structures: Production Readiness
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Existence Structures: Production Readiness

No, it is not production ready (but getting there)
–In happy contrast to a few months ago...

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

CurrentR&D Prototype

N4037

RCU
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Existence Structures: Production Readiness

Limping

Builds

Benchmark Special

Production: 1K Instances

Production: 1M Instances

Production: 1G Instances

Production: 1T Instances
Need this for Internet of Things,
Validation is a big unsolved problem

R&D Prototype

No, it is not production ready (but getting there)
–In happy contrast to a few months ago...

Current

N4037

RCU
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Existence Structures: Known Antecedents

Fraser: “Practical Lock-Freedom”, Feb 2004
–Insistence on lock freedom: High complexity, poor performance
–Similarity between Fraser's OSTM commit and existence switch

McKenney, Krieger, Sarma, & Soni: “Atomically Moving List 
Elements Between Lists Using Read-Copy Update”, Apr 2006

–Block concurrent operations while large update is carried out

Triplett: “Scalable concurrent hash tables via relativistic 
programming”, Sept 2009

Triplett: “Relativistic Causal Ordering: A Memory Model for 
Scalable Concurrent Data Structures”, Feb 2012

–Similarity between Triplett's key switch and allegiance switch
–Could share nodes between trees like Triplett does between hash 

chains, but would impose restrictions and API complexity
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Trivial Lock-Based Concurrent Deque
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Trivial Lock-Based Concurrent Deque

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A
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Trivial Lock-Based Concurrent Deque

Use two lock-based dequeues
–Can always insert concurrently: grab dequeue's lock
–Can always remove concurrently unless one or both are empty

• If yours is empty, grab both locks in order!

But why push all your data through one deque???

Left
Head

Right
Head

A B C D

Left
Head

Right
Head

A
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Summary
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Summary

There is currently no silver bullet:
–Split counters

• Extremely specialized
–Per-CPU/thread processing

• Not all algorithms can be efficiently partitioned
–Stream-based applications

• Specialized
–Read-only traversal to location being updated

• Great for small updates to large data structures, but limited otherwise
–Hardware lock elision

• Some good potential, and some potential limitations

Linux kernel: Good progress by combining approaches

Lots of opportunity for collaboration and innovation
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To Probe Deeper (1/4)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf 

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281 
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5 
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal  
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf 
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/ 

– Turner et al: “PerCPU Atomics”
•  http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf
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To Probe Deeper (2/4)

 Stream-based applications:
– Sutton: “Concurrent Programming With The Disruptor”

• http://www.youtube.com/watch?v=UvE389P6Er4 
• http://lca2013.linux.org.au/schedule/30168/view_talk 

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5 

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html 
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/ 
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589 
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf 
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf 
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/
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To Probe Deeper (3/4)

 Hardware lock elision: Overviews
– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”

• http://queue.acm.org/detail.cfm?id=2579227 

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/ 
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html 
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf 

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf 
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf 
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873 
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731 
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900 
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To Probe Deeper (4/4)

 RCU
– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”

• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf 
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf 

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf 
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf 

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867 

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/ 

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating 

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf 

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf 
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf 
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf
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Legal Statement

This work represents the view of the author and does not 
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks 
of International Business Machines Corporation in the United 
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be 
trademarks or service marks of others.
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Questions?

UseUse
the right toolthe right tool
for the job!!!for the job!!!

Image copyright © 2004 Melissa McKenney
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BACKUP
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Toy Implementation of RCU: 20 Lines of Code,
Full Read-Side Performance!!!
 Read-side primitives:

#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
        smp_read_barrier_depends(); \
        _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
        smp_wmb(); \
        (p) = (v); \
})
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems...
And some people still insist that RCU is complicated...  ;-)
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RCU Usage: Readers

Pointers to RCU-protected objects are guaranteed to exist 
throughout a given RCU read-side critical section

rcu_read_lock(); /* Start critical section. */
p = rcu_dereference(cptr); /* consume load */
/* *p guaranteed to exist. */
do_something_with(p);
rcu_read_unlock(); /* End critical section. */
/* *p might be freed!!! */

The rcu_read_lock(), rcu_dereference() and 
rcu_read_unlock() primitives are very light weight

However, updaters must use more care...
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RCU Usage: Updaters

Updaters must wait for an RCU grace period to elapse 
between making something inaccessible to readers and 
freeing it

spin_lock(&updater_lock);
q = cptr; /* Can be relaxed load. */
rcu_assign_pointer(cptr, newp); /* store release */
spin_unlock(&updater_lock);
synchronize_rcu(); /* Wait for grace period. */
kfree(q);

RCU grace period waits for all pre-exiting readers to complete 
their RCU read-side critical sections
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Hardware Lock Elision: Potential Game Changers

What must happen for HTM to take over the world?
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Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity
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Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity – but of course the Linux-kernel RCU 
maintainer and weak-memory advocate would say that...
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Hardware Lock Elision: Potential Game Changers

Forward-progress guarantees
–Mainframe is a start, but larger sizes would be helpful

Transaction-size increases

 Improved debugging support
–Gottschich et al: “But how do we really debug transactional memory?”

Handle irrevocable operations (unbuffered I/O, syscalls, ...)

Weak atomicity:  It is not just me saying this!
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”
– Shavit: “Data structures in the multicore age”
– Haas et al: “How FIFO is your FIFO queue?”
– Gramoli et al: “Democratizing transactional memory”

With these additions, much greater scope possible
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