
© 2011 IBM Corporation

Validating Core Parallel Software

linux.conf.au

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center

linux.conf.au January 29, 2013

© 2011 IBM Corporation2

2013 linux.conf.au Open Programming Minisummit

Overview

Avoiding Bugs The Open-Source Way

Avoiding Bugs By Design

Avoiding Bugs By Process

Avoiding Bugs By Mechanical Proofs

Avoiding Bugs By Statistical Analysis

Coping With Schedule Pressure

But I Did All This And There Are Still Bugs!!!

Summary and Conclusions

© 2011 IBM Corporation3

2013 linux.conf.au Open Programming Minisummit

But First, Some Limitations...

The only bug-free program is a trivial program

A reliable programs has no known bugs

© 2011 IBM Corporation4

2013 linux.conf.au Open Programming Minisummit

But First, Some Limitations...

The only bug-free program is a trivial program

A reliable programs has no known bugs

Therefore, any non-trivial reliable program has at least one
bug that you do not know about

Fortunately... Unfortunately...

© 2011 IBM Corporation5

2013 linux.conf.au Open Programming Minisummit

But First, Some Limitations...

The only bug-free program is a trivial program

A reliable programs has no known bugs

Therefore, any non-trivial reliable program has at least one
bug that you do not know about

Fortunately, the size and complexity of trivial programs has
been steadily increasing over the decades, but unfortunately
the size of all programs has been increasing as well

© 2011 IBM Corporation6

2013 linux.conf.au Open Programming Minisummit

But First, Some Limitations...

The only bug-free program is a trivial program

A reliable programs has no known bugs

Therefore, any non-trivial reliable program has at least one
bug that you do not know about

Fortunately, the size and complexity of trivial programs has
been steadily increasing over the decades, but unfortunately
the size of all programs has been increasing as well

The Linux kernel is a non-trivial program

© 2011 IBM Corporation7

2013 linux.conf.au Open Programming Minisummit

But First, Some Limitations...

The only bug-free program is a trivial program

A reliable programs has no known bugs

Therefore, any non-trivial reliable program has at least one
bug that you do not know about

Fortunately, the size and complexity of trivial programs has
been steadily increasing over the decades, but unfortunately
the size of all programs has been increasing as well

The Linux kernel is a non-trivial program

 In this imperfect real world, validation is more about reliability
than about complete freedom from bugs

© 2011 IBM Corporation8

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs The Open-Source Way

© 2011 IBM Corporation9

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs The Open-Source Way

To 10,000 eyes, all bugs are shallow
–But how many of those eyes are going to actually look at your patch?
–When will they look at it?
–How many will be experienced/clever enough to find your bugs?

Many people test the Linux kernel
–Some test random patches (perhaps even yours)
–Some test -next
–Some test maintainer trees
–Some test mainline
–Some test distro kernels
–Will they run the HW/SW config and workload that will find your bug?

Open source review/testing is wonderful, but for core parallel
software you might want to be more proactive...

© 2011 IBM Corporation10

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Design

© 2011 IBM Corporation11

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Design

Understand the Hardware

Understand the Software Environment

© 2011 IBM Corporation12

2013 linux.conf.au Open Programming Minisummit

Performance is a Key Correctness Criterion for
Parallel Software

If you don't care about performance,
why on earth are you bothering with parallelism???

© 2011 IBM Corporation13

2013 linux.conf.au Open Programming Minisummit

Performance of Synchronization Mechanisms

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4
Single cache miss (off-core) 31.2 86.6
CAS cache miss (off-core) 31.2 86.5
Single cache miss (off-socket) 92.4 256.7
CAS cache miss (off-socket) 95.9 266.4

Cost (ns)

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

And these are best-case values!!! (Why?)And these are best-case values!!! (Why?)

© 2011 IBM Corporation14

2013 linux.conf.au Open Programming Minisummit

System Hardware Structure

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

S
O

L
 R

T
 @

 5
G

H
z

S
O

L
 R

T
 @

 5
G

H
z

Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???Electrons move at 0.03C to 0.3C in transistors and, so lots of waiting. 3D???

3
ce

n
ti

m
et

er
s

3
ce

n
ti

m
et

er
s

© 2011 IBM Corporation15

2013 linux.conf.au Open Programming Minisummit

Atomic Instruction on Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Lots and Lots of Latency!!!Lots and Lots of Latency!!!

© 2011 IBM Corporation16

2013 linux.conf.au Open Programming Minisummit

Atomic Instruction on Per-CPU Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Little Latency, Lots of Instructions at Core Clock RateLittle Latency, Lots of Instructions at Core Clock Rate

© 2011 IBM Corporation17

2013 linux.conf.au Open Programming Minisummit

HW-Assist Atomic Increment of Global Variable

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

CPU CPU CPU CPU

$ $ $ $

Interconnect

Interconnect MemoryMemory

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

Store
Buffer

SGI systems used this approach in the 1990s, expect modern micros to pick it up.
Yes, HW changes. SW must change with it.

© 2011 IBM Corporation18

2013 linux.conf.au Open Programming Minisummit

Design Principle: Avoid Bottlenecks

Only one of something: bad for performance and scalability.Only one of something: bad for performance and scalability.
Also typically results in high complexity.Also typically results in high complexity.

© 2011 IBM Corporation19

2013 linux.conf.au Open Programming Minisummit

Design Principle: Avoid Bottlenecks

Many instances of something good!Many instances of something good!
Avoiding tightly coupled interactions is an excellent way to avoid bugs.Avoiding tightly coupled interactions is an excellent way to avoid bugs.

© 2011 IBM Corporation20

2013 linux.conf.au Open Programming Minisummit

Design Principles: (1) “Cheap and Cheerful” and
(2) “Get Your Money's Worth”

Uncontended

Acquire

Release

Critical
Section

256.7 cycles

1
cycle

1: Reduce synchronization overhead

2: Increase critical section duration

Important safety tip:

© 2011 IBM Corporation21

2013 linux.conf.au Open Programming Minisummit

Design Principles: (1) “Cheap and Cheerful” and
(2) “Get Your Money's Worth”

Uncontended

Acquire

Release

Critical
Section

256.7 cycles

1
cycle

1: Reduce synchronization overhead

2: Increase critical section duration

Important safety tip: You need both.

© 2011 IBM Corporation22

2013 linux.conf.au Open Programming Minisummit

Understand the Hardware: Summary

A strong understanding of the hardware helps rule out
infeasible designs early in process

Understanding hardware trends helps reduce the
amount of future rework required

Ditto for low-level software that your code depends on
–In my case, things like in_irq() and user-mode helpers...

Of course both the hardware and low-level software will
change with time...

–Even if it is now correct, your code will eventually be wrong...

© 2011 IBM Corporation23

2013 linux.conf.au Open Programming Minisummit

Understand the Hardware: Summary

A strong understanding of the hardware helps rule out
infeasible designs early in process

Understanding hardware trends helps reduce the
amount of future rework required

Ditto for low-level software that your code depends on
–In my case, things like in_irq() and user-mode helpers...

Of course both the hardware and low-level software will
change with time...

–Even if it is now correct, your code will eventually be wrong...
–This is one reason why we do regression testing

© 2011 IBM Corporation24

2013 linux.conf.au Open Programming Minisummit

Understand the Software Environment

Understand the Workloads
–Which for Linux means a great many of them
–Your code must handle whatever shows up

Google-Search LWN
–But you knew this already

Test Unfamiliar Primitives
–And complain on LKML if they break
–Preferably accompanying the complaint with a fix

Review Others' Code
–See Documentation directory for how-to info

Make a Map
–See next slides...

© 2011 IBM Corporation25

2013 linux.conf.au Open Programming Minisummit

Making a Map of Software

© 2011 IBM Corporation26

2013 linux.conf.au Open Programming Minisummit

Hierarchical RCU Data Structures

 1 struct rcu_dynticks {
 2 int dynticks_nesting;
 3 int dynticks;
 4 int dynticks_nmi;
 5 };
 6
 7 struct rcu_node {
 8 spinlock_t lock;
 9 long gpnum;
 10 long completed;
 11 unsigned long qsmask;
 12 unsigned long qsmaskinit;
 13 unsigned long grpmask;
 14 int grplo;
 15 int grphi;
 16 u8 grpnum;
 17 u8 level;
 18 struct rcu_node *parent;
 19 struct list_head blocked_tasks[2];
 20 }
 21
 22 struct rcu_data {
 23 long completed;
 24 long gpnum;
 25 long passed_quiesc_completed;
 26 bool passed_quiesc;
 27 bool qs_pending;
 28 bool beenonline;
 29 bool preemptable;
 30 struct rcu_node *mynode;
 31 unsigned long grpmask;
 32 struct rcu_head *nxtlist;
 33 struct rcu_head **nxttail[RCU_NEXT_SIZE];
 34 long qlen;
 35 long qlen_last_fqs_check;
 36 unsigned long n_force_qs_snap;
 37 long blimit;
 38 #ifdef CONFIG_NO_HZ
 39 struct rcu_dynticks *dynticks;
 40 int dynticks_snap;
 41 int dynticks_nmi_snap;

 42 #ifdef CONFIG_NO_HZ
 43 unsigned long dynticks_fqs;
 44 #endif /* #ifdef CONFIG_NO_HZ */
 45 unsigned long offline_fqs;
 46 unsigned long resched_ipi;
 47 long n_rcu_pending;
 48 long n_rp_qs_pending;
 49 long n_rp_cb_ready;
 50 long n_rp_cpu_needs_gp;
 51 long n_rp_gp_completed;
 52 long n_rp_gp_started;
 53 long n_rp_need_fqs;
 54 long n_rp_need_nothing;
 55 int cpu;
 56 };
 57
 58 struct rcu_state {
 59 struct rcu_node node[NUM_RCU_NODES];
 60 struct rcu_node *level[NUM_RCU_LVLS];
 61 u32 levelcnt[MAX_RCU_LVLS + 1];
 62 u8 levelspread[NUM_RCU_LVLS];
 63 struct rcu_data *rda[NR_CPUS];
 64 u8 signaled;
 65 long gpnum;
 66 long completed;
 67 spinlock_t onofflock;
 68 struct rcu_head *orphan_cbs_list;
 69 struct rcu_head **orphan_cbs_tail;
 70 long orphan_qlen;
 71 spinlock_t fqslock;
 72 unsigned long jiffies_force_qs;
 73 unsigned long n_force_qs;
 74 unsigned long n_force_qs_lh;
 75 unsigned long n_force_qs_ngp;
 76 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
 77 unsigned long gp_start;
 78 unsigned long jiffies_stall;
 79 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
 80 long dynticks_completed;
 81 };

© 2011 IBM Corporation27

2013 linux.conf.au Open Programming Minisummit

Mapping Data Structures

rcu_bhrcu_bh

struct rcu_nodestruct rcu_node

struct rcu_nodestruct rcu_node struct rcu_nodestruct rcu_node

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

rcurcu

struct rcu_nodestruct rcu_node

struct rcu_nodestruct rcu_node struct rcu_nodestruct rcu_node

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_dynticksrcu_dynticks

structstruct
rcu_dynticksrcu_dynticks

structstruct
rcu_dynticksrcu_dynticks

structstruct
rcu_dynticksrcu_dynticks

rcu_preemptrcu_preempt

struct rcu_nodestruct rcu_node

struct rcu_nodestruct rcu_node struct rcu_nodestruct rcu_node

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

structstruct
rcu_datarcu_data

struct rcu_statestruct rcu_state

Per-CPUPer-CPU

GlobalGlobal

© 2011 IBM Corporation28

2013 linux.conf.au Open Programming Minisummit

Placement of rcu_node Within rcu_state

struct rcu_statestruct rcu_state

struct rcu_nodestruct rcu_node

CPUs 2:3CPUs 2:3
->node[2]->node[2]

struct rcu_nodestruct rcu_node

CPUs 0:1CPUs 0:1
->node[1]->node[1]

struct rcu_nodestruct rcu_node

CPUs 0:4CPUs 0:4
->node[0]->node[0]

© 2011 IBM Corporation29

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Process

© 2011 IBM Corporation30

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Process

Review your own work carefully
– See following slides

Test early, test often, test in small pieces
– Debugging is 2-3 times harder than writing code
– Problem-isolation effort rises as the square of the code size

Where possible, use existing well-tested code
– Even if it is a lot more fun to re-invent the wheel

 I would have rejected this advice as late as the early 1990s,
but have since learned the hard way to accept it

But I still sometimes has difficulty following it:
– http://paulmck.livejournal.com/14639.html

© 2011 IBM Corporation31

2013 linux.conf.au Open Programming Minisummit

Review Your Own Code Carefully

Paul E. McKenney's self-review rules for complex code:
–Write the code long hand in pen on paper
–Correct bugs as you go
–Copy onto a clean sheet of paper
–Repeat until the last two versions are identical

What constitutes “not complex”?
–Sequential code, and
–You test it incrementally

• For example, bash script or single-threaded C-code with gdb
–If feasible, you test it exhaustively

© 2011 IBM Corporation32

2013 linux.conf.au Open Programming Minisummit

© 2011 IBM Corporation33

2013 linux.conf.au Open Programming Minisummit

© 2011 IBM Corporation34

2013 linux.conf.au Open Programming Minisummit

© 2011 IBM Corporation35

2013 linux.conf.au Open Programming Minisummit

© 2011 IBM Corporation36

2013 linux.conf.au Open Programming Minisummit

So, How Well Did I Do?

© 2011 IBM Corporation37

2013 linux.conf.au Open Programming Minisummit

 1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static void rcu_preempt_offline_tasks(struct rcu_state *rsp,
 2 struct rcu_node *rnp,2 struct rcu_node *rnp,
 3 struct rcu_data *rdp)3 struct rcu_data *rdp)
 4 {4 {
 5 int i;5 int i;
 6 struct list_head *lp;6 struct list_head *lp;
 7 struct list_head *lp_root;7 struct list_head *lp_root;
 8 struct rcu_node *rnp_root = rcu_get_root(rsp);8 struct rcu_node *rnp_root = rcu_get_root(rsp);
 9 struct task_struct *tp;9 struct task_struct *tp;
 10 10
 11 if (rnp == rnp_root) {11 if (rnp == rnp_root) {
 12 WARN_ONCE(1, "Last CPU thought to be offlined?");12 WARN_ONCE(1, "Last CPU thought to be offlined?");
 13 return;13 return;
 14 }14 }
 15 WARN_ON_ONCE(rnp != rdp->mynode &&15 WARN_ON_ONCE(rnp != rdp->mynode &&
 16 (!list_empty(&rnp->blocked_tasks[0]) ||16 (!list_empty(&rnp->blocked_tasks[0]) ||
 17 !list_empty(&rnp->blocked_tasks[1])));17 !list_empty(&rnp->blocked_tasks[1])));
 18 for (i = 0; i < 2; i++) {18 for (i = 0; i < 2; i++) {
 19 lp = &rnp->blocked_tasks[i];19 lp = &rnp->blocked_tasks[i];
 20 lp_root = &rnp_root->blocked_tasks[i];20 lp_root = &rnp_root->blocked_tasks[i];
 21 while (!list_empty(lp)) {21 while (!list_empty(lp)) {
 22 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);22 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
 23 spin_lock(&rnp_root->lock); /* irqs already disabled */23 spin_lock(&rnp_root->lock); /* irqs already disabled */
 24 list_del(&tp->rcu_node_entry);24 list_del(&tp->rcu_node_entry);
 25 tp->rcu_blocked_node = rnp_root;25 tp->rcu_blocked_node = rnp_root;
 26 list_add(&tp->rcu_node_entry, lp_root);26 list_add(&tp->rcu_node_entry, lp_root);
 27 spin_unlock(&rnp_root->lock); /* irqs remain disabled */27 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
 28 }28 }
 29 }29 }
 30 }30 }

© 2011 IBM Corporation38

2013 linux.conf.au Open Programming Minisummit

 1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 2 struct rcu_node *rnp,2 struct rcu_node *rnp,
 3 struct rcu_data *rdp)3 struct rcu_data *rdp)
 4 {4 {
 5 int i;5 int i;
 6 struct list_head *lp;6 struct list_head *lp;
 7 struct list_head *lp_root;7 struct list_head *lp_root;
 8 int retval;8 int retval;
 9 struct rcu_node *rnp_root = rcu_get_root(rsp);9 struct rcu_node *rnp_root = rcu_get_root(rsp);
 10 struct task_struct *tp;10 struct task_struct *tp;
 11 11
 12 if (rnp == rnp_root) {12 if (rnp == rnp_root) {
 13 WARN_ONCE(1, "Last CPU thought to be offlined?");13 WARN_ONCE(1, "Last CPU thought to be offlined?");
 14 return 0; /* Shouldn't happen: at least one CPU online. */14 return 0; /* Shouldn't happen: at least one CPU online. */
 15 }15 }
 16 WARN_ON_ONCE(rnp != rdp->mynode &&16 WARN_ON_ONCE(rnp != rdp->mynode &&
 17 (!list_empty(&rnp->blocked_tasks[0]) ||17 (!list_empty(&rnp->blocked_tasks[0]) ||
 18 !list_empty(&rnp->blocked_tasks[1])));18 !list_empty(&rnp->blocked_tasks[1])));
 19 retval = rcu_preempted_readers(rnp);19 retval = rcu_preempted_readers(rnp);
 20 for (i = 0; i < 2; i++) {20 for (i = 0; i < 2; i++) {
 21 lp = &rnp->blocked_tasks[i];21 lp = &rnp->blocked_tasks[i];
 22 lp_root = &rnp_root->blocked_tasks[i];22 lp_root = &rnp_root->blocked_tasks[i];
 23 while (!list_empty(lp)) {23 while (!list_empty(lp)) {
 24 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);24 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
 25 spin_lock(&rnp_root->lock); /* irqs already disabled */25 spin_lock(&rnp_root->lock); /* irqs already disabled */
 26 list_del(&tp->rcu_node_entry);26 list_del(&tp->rcu_node_entry);
 27 tp->rcu_blocked_node = rnp_root;27 tp->rcu_blocked_node = rnp_root;
 28 list_add(&tp->rcu_node_entry, lp_root);28 list_add(&tp->rcu_node_entry, lp_root);
 29 spin_unlock(&rnp_root->lock); /* irqs remain disabled */29 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
 30 }30 }
 31 }31 }
 32 return retval;32 return retval;
 33 }33 }

© 2011 IBM Corporation39

2013 linux.conf.au Open Programming Minisummit

 1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,1 static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
 2 struct rcu_node *rnp,2 struct rcu_node *rnp,
 3 struct rcu_data *rdp)3 struct rcu_data *rdp)
 4 {4 {
 5 int i;5 int i;
 6 struct list_head *lp;6 struct list_head *lp;
 7 struct list_head *lp_root;7 struct list_head *lp_root;
 8 int retval;8 int retval;
 9 struct rcu_node *rnp_root = rcu_get_root(rsp);9 struct rcu_node *rnp_root = rcu_get_root(rsp);
 10 struct task_struct *tp;10 struct task_struct *tp;
 11 11
 12 if (rnp == rnp_root) {12 if (rnp == rnp_root) {
 13 WARN_ONCE(1, "Last CPU thought to be offlined?");13 WARN_ONCE(1, "Last CPU thought to be offlined?");
 14 return 0; /* Shouldn't happen: at least one CPU online. */14 return 0; /* Shouldn't happen: at least one CPU online. */
 15 }15 }
 16 WARN_ON_ONCE(rnp != rdp->mynode &&16 WARN_ON_ONCE(rnp != rdp->mynode &&
 17 (!list_empty(&rnp->blocked_tasks[0]) ||17 (!list_empty(&rnp->blocked_tasks[0]) ||
 18 !list_empty(&rnp->blocked_tasks[1])));18 !list_empty(&rnp->blocked_tasks[1])));
 19 retval = rcu_preempted_readers(rnp);19 retval = rcu_preempted_readers(rnp);
 20 for (i = 0; i < 2; i++) {20 for (i = 0; i < 2; i++) {
 21 lp = &rnp->blocked_tasks[i];21 lp = &rnp->blocked_tasks[i];
 22 lp_root = &rnp_root->blocked_tasks[i];22 lp_root = &rnp_root->blocked_tasks[i];
 23 while (!list_empty(lp)) {23 while (!list_empty(lp)) {
 24 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);24 tp = list_entry(lp->next, typeof(*tp), rcu_node_entry);
 25 spin_lock(&rnp_root->lock); /* irqs already disabled */25 spin_lock(&rnp_root->lock); /* irqs already disabled */
 26 list_del(&tp->rcu_node_entry);26 list_del(&tp->rcu_node_entry);
 27 tp->rcu_blocked_node = rnp_root;27 tp->rcu_blocked_node = rnp_root;
 28 list_add(&tp->rcu_node_entry, lp_root);28 list_add(&tp->rcu_node_entry, lp_root);
 29 spin_unlock(&rnp_root->lock); /* irqs remain disabled */29 spin_unlock(&rnp_root->lock); /* irqs remain disabled */
 30 }30 }
 31 }31 }
 32 return retval;32 return retval;
 33 }33 }

More changes due to RCU priority boosting

© 2011 IBM Corporation40

2013 linux.conf.au Open Programming Minisummit

When Does This Approach Fail to Avoid Bugs?

© 2011 IBM Corporation41

2013 linux.conf.au Open Programming Minisummit

When Does This Approach Fail to Avoid Bugs?

Excessive schedule pressure rules out this approach

Excessive optimism about understanding of surrounding hardware
and software

– Limitations of in_irq()
– “Interesting” properties of user-mode helpers: Entering exception handlers then

never leaving them

Excessive optimism about understanding of requirements
– “It is only a few microseconds added latency!!!”
– “It is only a few extra scheduler-clock interrupts!!!”
– “It won't degrade scalability up to at least eight CPUs!!!”

Excessive optimism about understanding of algorithm
– “That cannot possibly happen!!!”

But without excessive optimism, we would never start anything...

© 2011 IBM Corporation42

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Mechanical Proofs

© 2011 IBM Corporation43

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Mechanical Proofs

Works well for small, self-contained algorithms
–http://lwn.net/Articles/243851/ (QRCU)
–http://lwn.net/Articles/279077/ (RCU dynticks I/F)
–git://lttng.org/userspace-rcu formal-model (URCU)

However, the need for formal proof often indicates an
overly complex design!!!

–Preemptible RCU's dynticks interface being an extreme case in
point (http://lwn.net/Articles/279077/)

And you cannot prove your proof's assumptions...

© 2011 IBM Corporation44

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Statistical Analysis

© 2011 IBM Corporation45

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Statistical Analysis

Different kernel configuration options select different code

Suppose that more failure occur with CONFIG_FOO=y
–Focus inspection on code under #ifdef CONFIG_FOO

But what exactly does “more failures” mean?

© 2011 IBM Corporation46

2013 linux.conf.au Open Programming Minisummit

Avoiding Bugs By Statistical Analysis

Different kernel configuration options select different code

Suppose that more failure occur with CONFIG_FOO=y
–Focus inspection on code under #ifdef CONFIG_FOO

But what exactly does “more failures” mean?
–That is where the statistical analysis comes in
–The “more failures” must be enough more to be statistically significant
–One of the most useful classes I took as an undergraduate was a

statistics course!

© 2011 IBM Corporation47

2013 linux.conf.au Open Programming Minisummit

Coping With Schedule Pressure

© 2011 IBM Corporation48

2013 linux.conf.au Open Programming Minisummit

Coping With Schedule Pressure

When you are fixing a critical bug, speed counts

The difference is level of risk
–The code is already broken, so there is less benefit from using

extremely dainty process steps (exceptions?)
–But only if you follow up with careful process
–Which I repeatedly learn the hard way:

http://paulmck.livejournal.com/14639.html
–Failure to invest a few days in early 2009 cost me more than a

month in late 2009!!!

Long-term perspective required
–And that means you – leave the “blame it on management” game to

Dilbert cartoons
–Align with management initiatives, for example, “agile development”

© 2011 IBM Corporation49

2013 linux.conf.au Open Programming Minisummit

But I Did All This And There Are Still Bugs!!!

© 2011 IBM Corporation50

2013 linux.conf.au Open Programming Minisummit

But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”
–Might your program be non-trivial?

The purpose of careful software-development practices
is to reduce risk

–Strive for perfection, but understand that this goal is rarely
reached in this world

© 2011 IBM Corporation51

2013 linux.conf.au Open Programming Minisummit

But I Did All This And There Are Still Bugs!!!

 “Be Careful!!! It Is A Real World Out There!!!”
–Might your program be non-trivial?

The purpose of careful software-development practices
is to reduce risk

–Strive for perfection, but understand that this goal is rarely
reached in this world

But you still need to fix your bugs!!!

© 2011 IBM Corporation52

2013 linux.conf.au Open Programming Minisummit

Fixing Bugs

The first challenge is locating the bugs

© 2011 IBM Corporation53

2013 linux.conf.au Open Programming Minisummit

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are

© 2011 IBM Corporation54

2013 linux.conf.au Open Programming Minisummit

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!

Ways to make the computer tell you where the bugs are:

© 2011 IBM Corporation55

2013 linux.conf.au Open Programming Minisummit

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!

Ways to make the computer tell you where the bugs are:
–Debugging printk()s and assertions
–Event tracing and ftrace
–Lock dependency checker (CONFIG_PROVE_LOCKING and

CONFIG_PROVE_RCU)
–Static analysis (and pay attention to compiler warnings!!!)
–Structured testing: Use an experimental approach
–Record all test results, including environment

© 2011 IBM Corporation56

2013 linux.conf.au Open Programming Minisummit

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!
–But getting another person's viewpoint can be helpful

• To 10,000 educated and experienced eyes, all bugs are shallow

Gaining other people's viewpoints

© 2011 IBM Corporation57

2013 linux.conf.au Open Programming Minisummit

Fixing Bugs

The first challenge is locating the bugs
–The computer knows where the bugs are
–So your job is to make it tell you!
–But getting another person's viewpoint can be helpful

• To 10,000 educated and experienced eyes, all bugs are shallow

Gaining other people's viewpoints
–Have other people review your code
–Explain your code to someone else
–Special case of explaining code: Document it

• Think of questions you might ask if someone else showed you the code
• Focus on the parts of the code you are most proud of: Most likely buggy!
• Try making a copy of the code, removing the comments, and then

documenting it: Perhaps the comments are confusing you

© 2011 IBM Corporation58

2013 linux.conf.au Open Programming Minisummit

But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do?

© 2011 IBM Corporation59

2013 linux.conf.au Open Programming Minisummit

But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do? Scripting!!!

How to generate useful scripts:
–Do it by hand the first few times
–But keep detailed notes on what you did and what you found
–Incrementally construct scripts to carry out the most laborious tasks
–Eventually, you will have a script that analyzes the failures

But suppose you are working on many different projects?

© 2011 IBM Corporation60

2013 linux.conf.au Open Programming Minisummit

But What If The Computer Knows Too Much?

Event tracing for RCU: 35MB of trace events for each failure

Way too much to read and analyze by hand all the time

What to do? Scripting!!!

How to generate useful scripts:
–Do it by hand the first few times
–But keep detailed notes on what you did and what you found
–Incrementally construct scripts to carry out the most laborious tasks
–Eventually, you will have a script that analyzes the failures

But suppose you are working on many different projects?
–Script the common cases that occur in many projects
–Take advantage of tools others have constructed

© 2011 IBM Corporation61

2013 linux.conf.au Open Programming Minisummit

Summary and Conclusions

© 2011 IBM Corporation62

2013 linux.conf.au Open Programming Minisummit

Summary and Conclusions

Avoid Bugs The Open-Source Way

Avoid Bugs By Design

Avoid Bugs By Process

Avoid Bugs By Mechanical Proofs

Avoid Bugs By Statistical Analysis

Avoid Schedule Pressure via Long-Term View

But Even If You Do All This, There Will Still Be Some
Bugs (http://lwn.net/Articles/453002/)

–Yes, you are living in the real world!!!
–Might be painful sometimes, but it sure beats all known

alternatives...

© 2011 IBM Corporation63

2013 linux.conf.au Open Programming Minisummit

Legal Statement

 This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered
trademarks of International Business Machines Corporation
in the United States and/or other countries.

 Linux is a registered trademark of Linus Torvalds.

 Other company, product, and service names may be
trademarks or service marks of others.

© 2011 IBM Corporation64

2013 linux.conf.au Open Programming Minisummit

Questions?

	IBM Presentation Template Full Version
	Team
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

