
© 2015 IBM Corporation

Formal Verification and Linux-Kernel Concurrency

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center
Member, IBM Academy of Technology

CS 362, Oregon State University, June 2, 2015

© 2015 IBM Corporation2

CS 362, Oregon State University, June 2, 2015

Overview

Two Definitions and a Consequence

Current RCU Regression Testing

How Well Does Linux-Kernel Testing Really Work?

Why Formal Verification?

Formal Verification and Regression Testing: Requirements

Formal Verification Challenge

© 2015 IBM Corporation3

CS 362, Oregon State University, June 2, 2015

Two Definitions and a Consequence

© 2015 IBM Corporation4

CS 362, Oregon State University, June 2, 2015

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

© 2015 IBM Corporation5

CS 362, Oregon State University, June 2, 2015

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

© 2015 IBM Corporation6

CS 362, Oregon State University, June 2, 2015

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel

© 2015 IBM Corporation7

CS 362, Oregon State University, June 2, 2015

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel
–In practice, validation is about reducing risk
–Can formal verification now take a front-row seat in this risk reduction?

© 2015 IBM Corporation8

CS 362, Oregon State University, June 2, 2015

Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel
–In practice, validation is about reducing risk
–Can formal verification now take a front-row seat in this risk reduction?

What would need to happen for me to include formal
verification in my RCU regression testing?

© 2015 IBM Corporation9

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing

© 2015 IBM Corporation10

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing
But First, What Is RCU (Read-Copy Update)?

© 2015 IBM Corporation11

CS 362, Oregon State University, June 2, 2015

RCU Is A Synchronization Mechanism That Avoids
Contention and Expensive Hardware Operations

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Typical synchronization
mechanisms do this a lot,
plus suffer from contention

Heavily
optimized

reader-writer
lock might get

here for readers
(but too bad
about those

poor writers...)

Want to be here!

© 2015 IBM Corporation12

CS 362, Oregon State University, June 2, 2015

RCU Has Exceedingly Lightweight Readers

 In non-preemptible (run-to-block) environments, lightest-
weight conceivable read-side primitives

–#define rcu_read_lock()
–#define rcu_read_unlock()
–RCU readers are clearly extremely weakly ordered

© 2015 IBM Corporation13

CS 362, Oregon State University, June 2, 2015

RCU Has Exceedingly Lightweight Readers

 In non-preemptible (run-to-block) environments, lightest-
weight conceivable read-side primitives

–#define rcu_read_lock()
–#define rcu_read_unlock()
–RCU readers are clearly extremely weakly ordered

Best possible performance, scalability, real-time response,
wait-freedom, and energy efficiency

© 2015 IBM Corporation14

CS 362, Oregon State University, June 2, 2015

RCU Has Exceedingly Lightweight Readers

 In non-preemptible (run-to-block) environments, lightest-weight
conceivable read-side primitives

–#define rcu_read_lock()
–#define rcu_read_unlock()
–RCU readers are clearly extremely weakly ordered

Best possible performance, scalability, real-time response, wait-
freedom, and energy efficiency

Uses indirect reasoning to determine when readers are done
–In preemptible environments, rcu_read_lock() and rcu_read_unlock()

manipulate per-thread variables

References:
– McKenney and Slingwine: “Read-Copy Update: Using Execution History to Solve Concurrency

Problems”, PDCS 1998
– Desnoyers, McKenney, Stern, Dagenais, and Walpole: “User-Level Implementations of Read-

Copy Update”, Feb. 2012 IEEE TPDS
– Additional references in backup slides

© 2015 IBM Corporation15

CS 362, Oregon State University, June 2, 2015

Publication of And Subscription to New Data

A cptr

->a=?
->b=?
->c=?

cptrcptr cptr

in
iti

al
iz

at
io

n

km
a

llo
c(

)

rc
u_

as
si

g n
_p

oi
nt

er
(c

pt
r,

p)

->a=1
->b=2
->c=3

->a=1
->b=2
->c=3

p
=

 r
cu

_d
er

ef
er

en
c e

(c
pt

r)

Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (backup)
Safe for updates: inaccessible to all readers

readerp p p

See “To probe deeper” slides for more informationSee “To probe deeper” slides for more information

© 2015 IBM Corporation16

CS 362, Oregon State University, June 2, 2015

RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())

A

B

C

boa

cat

gnu

boa

cat

gnu

boa

cat

gnu

boa

gnu
sy

nc
hr

on
i z

e_
rc

u(
)

lis
t_

de
l_

rc
u(

)

One Version Two Versions One Version

Readers? Readers? Readers?X

One Version

kf
re

e(
)

© 2015 IBM Corporation17

CS 362, Oregon State University, June 2, 2015

Waiting for Pre-Existing Readers

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t

sw
itc

h

Grace Period

RCU re
ad

er

remove data free data

© 2015 IBM Corporation18

CS 362, Oregon State University, June 2, 2015

Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
 typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
 smp_read_barrier_depends(); \
 _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
 smp_wmb(); \
 (p) = (v); \
})
void synchronize_rcu(void)
{
 int cpu;

 for_each_online_cpu(cpu)
 run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems

© 2015 IBM Corporation19

CS 362, Oregon State University, June 2, 2015

RCU Performance: Read-Only Hash Table

RCU and hazard pointers scale quite well!!!

© 2015 IBM Corporation20

CS 362, Oregon State University, June 2, 2015

RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)

© 2015 IBM Corporation21

CS 362, Oregon State University, June 2, 2015

RCU Applicability to the Linux Kernel

© 2015 IBM Corporation22

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing

© 2015 IBM Corporation23

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

© 2015 IBM Corporation24

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

Above is old technology – but not entirely ineffective
–2010: wait for -rc3 or -rc4. 2013: No problems with -rc1

Formal verification in design, but not in regression testing
–http://lwn.net/Articles/243851/, https://lwn.net/Articles/470681/,

https://lwn.net/Articles/608550/

© 2015 IBM Corporation25

CS 362, Oregon State University, June 2, 2015

How Well Does Linux-Kernel Testing Really Work?

© 2015 IBM Corporation26

CS 362, Oregon State University, June 2, 2015

Example 1: RCU-Scheduler Mutual Dependency

RCU Scheduler

Synchronization

Schedule Threads
Priority Boosting

Interrupt Handling

© 2015 IBM Corporation27

CS 362, Oregon State University, June 2, 2015

So, What Was The Problem?

Found during testing of Linux kernel v3.0-rc7:
–RCU read-side critical section is preempted for an extended period
–RCU priority boosting is brought to bear
–RCU read-side critical section ends, notes need for special processing
–Interrupt invokes handler, then starts softirq processing
–Scheduler invoked to wake ksoftirqd kernel thread:

• Acquires runqueue lock and enters RCU read-side critical section
• Leaves RCU read-side critical section, notes need for special processing
• Because in_irq() returns false, special processing attempts deboosting
• Which causes the scheduler to acquire the runqueue lock
• Which results in self-deadlock

–(See http://lwn.net/Articles/453002/ for more details.)

Fix: Add separate “exiting read-side critical section” state
–Also validated my creation of correct patches – without testing!

Note: Remains a bug even under SC

© 2015 IBM Corporation28

CS 362, Oregon State University, June 2, 2015

Example 1: Bug Was Located By Normal Testing

© 2015 IBM Corporation29

CS 362, Oregon State University, June 2, 2015

Example 2: Grace Period Cleanup/Initialization Bug

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 callback associated with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invokes callback, freeing A (too bad CPU 1 is still using it)

Not found via Linux-kernel validation: In production for 5 years!

© 2015 IBM Corporation30

CS 362, Oregon State University, June 2, 2015

Example 2: Grace Period Cleanup/Initialization Bug

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Free A

Still
Using A!!!Grace

Period 0
Grace

Period 1
Grace

Period 2

Grace
Period 0

Grace
Period 1

Grace
Period 2

Note: Remains a bug even under SC

© 2015 IBM Corporation31

CS 362, Oregon State University, June 2, 2015

Example 2: Grace Period Cleanup/Initialization Fix

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Grace
Period 0

Grace Period
intermission

Grace
Period 1

Grace
Period 0

Grace
Period 1

Grace Period
intermission

Cannot yet free A

All agree that grace period 1 starts after grace period 0 ends

© 2015 IBM Corporation32

CS 362, Oregon State University, June 2, 2015

Example 1 & Example 2 Results

Example 1: Bug was located by normal Linux test procedures

Example 2: Bug was missed by normal Linux test procedures
–Not found via Linux-kernel validation: In production for 5 years!
–On systems with up to 4096 CPUs...

Both are bugs even under sequential consistency

Can formal verification do better?

© 2015 IBM Corporation33

CS 362, Oregon State University, June 2, 2015

Why Formal Verification?

© 2015 IBM Corporation34

CS 362, Oregon State University, June 2, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

© 2015 IBM Corporation35

CS 362, Oregon State University, June 2, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 20 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 system-years of RCU per year: p(RCU) = 5(10-4)

© 2015 IBM Corporation36

CS 362, Oregon State University, June 2, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 20 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 system-years of RCU per year: p(RCU) = 5(10-4)

But assume bugs are races between pairs of random events
–N-CPU probability of RCU race bug: p(bug)=(p(RCU)/N)2N(N-1)/2
–Assume rcutorture p(RCU)=1, compute rcutorture speedup:

• Embedded: 1010: 36.5 days of rcutorture testing covers one year
• Server: 4(106): 250 years of rcutorture testing covers one year
• Linux kernel releases are only about 60 days apart: RCU is moving target

© 2015 IBM Corporation37

CS 362, Oregon State University, June 2, 2015

How Does RCU Work Without Formal Verification?

What is validation strategy for 20M server systems?
–Other failures mask those of RCU, including hardware failures

• I know of no human artifact with a million-year MTBF
–Increasing CPUs on test system increases race probability

• And many systems have relatively few CPUs
–Rare but critical operations can be forced to happen more frequently

• CPU hotplug, expedited grace periods, RCU barrier operations...
–Knowledge of possible race conditions allows targeted tests

• Plus other dirty tricks learned in 25 years of testing concurrent software
• Provide harsh environment to force software to evolve quickly

–Formal verification is used for some aspects of RCU design
• Dyntick idle, sysidle, NMI interactions

But it would be valuable to use formal verification as part of
RCU's regression testing!

© 2015 IBM Corporation38

CS 362, Oregon State University, June 2, 2015

Formal Verification and Regression Testing:
Requirements

© 2015 IBM Corporation39

CS 362, Oregon State University, June 2, 2015

Formal Verification and Regression Testing:
Requirements

(1)Either automatic translation or no translation required
– Automatic discarding of irrelevant portions of the code
– Manual translation provides opportunity for human error

(2)Correctly handle environment, including memory model
– The QRCU validation benchmark is an excellent cautionary tale

(3)Reasonable memory and CPU overhead
– Bugs must be located in practice as well as in theory
– Linux-kernel RCU is 15KLoC and release cycles are short

(4)Map to source code line(s) containing the bug
– “Something is wrong somewhere” is not a helpful diagnostic: I already know bugs exist

(5)Modest input outside of source code under test
– Preferably glean much of the specification from the source code itself (empirical spec!)

(6)Find relevant bugs
– Low false-positive rate, weight towards likelihood of occurrence (fixes create bugs!)

© 2015 IBM Corporation40

CS 362, Oregon State University, June 2, 2015

Formal Validation Tools Used and Regression Testing

Promela and Spin
– Holzmann: “The Spin Model Checker”
– I have used Promela/Spin in design for more than 20 years, but:

• Limited problem size, long run times, large memory consumption
• Does not implement memory models (assumes sequential consistency)
• Special language, difficult to translate from C

ARMMEM and PPCMEM (2)
– Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli:

“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory
Models”

• Very limited problem size, long run times, large memory consumption
• Restricted pseudo-assembly language, manual translation required

Herd (2, 3)
– Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation,

Testing, and Data-mining for Weak Memory”
• Very limited problem size (but much improved run times and memory consumption)
• Restricted pseudo-assembly language, manual translation required

Useful, but not for regression testing

© 2015 IBM Corporation41

CS 362, Oregon State University, June 2, 2015

Promela Model of Incorrect Atomic Increment (1/2)

 1 #define NUMPROCS 2
 2
 3 byte counter = 0;
 4 byte progress[NUMPROCS];
 5
 6 proctype incrementer(byte me)
 7 {
 8 int temp;
 9
 10 temp = counter;
 11 counter = temp + 1;
 12 progress[me] = 1;
 13 }

© 2015 IBM Corporation42

CS 362, Oregon State University, June 2, 2015

Promela Model of Incorrect Atomic Increment (2/2)
 15 init {
 16 int i = 0;
 17 int sum = 0;
 18
 19 atomic {
 20 i = 0;
 21 do
 22 :: i < NUMPROCS ­>
 23 progress[i] = 0;
 24 run incrementer(i);
 25 i++
 26 :: i >= NUMPROCS ­> break
 27 od;
 28 }
 29 atomic {
 30 i = 0;
 31 sum = 0;
 32 do
 33 :: i < NUMPROCS ­>
 34 sum = sum + progress[i];
 35 i++
 36 :: i >= NUMPROCS ­> break
 37 od;
 38 assert(sum < NUMPROCS || counter == NUMPROCS)
 39 }
 40 }

© 2015 IBM Corporation43

CS 362, Oregon State University, June 2, 2015

PPCMEM Example Litmus Test for IRIW

PPC IRIW.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | sync | sync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Fourteen CPU hours and 10 GB of memory

© 2015 IBM Corporation44

CS 362, Oregon State University, June 2, 2015

Herd Example Litmus Test for Incorrect IRIW

PPC IRIW­lwsync­f.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1; 1:r4=y;
2: 2:r2=x; 2:r4=y;
3: 3:r2=x; 3:r4=y;
}
 P0 | P1 | P2 | P3 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2) | lwz r3,0(r4) ;
 | | lwsync | lwsync ;
 | | lwz r5,0(r4) | lwz r5,0(r2) ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

. . .

Positive: 1 Negative: 15
Condition exists (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)
Observation IRIW Sometimes 1 15

© 2015 IBM Corporation45

CS 362, Oregon State University, June 2, 2015

Cautiously Optimistic For Future CBMC Version

(1)Either automatic translation or no translation required
– No translation required from C, discards irrelevant code quite well

(2)Correctly handle environment, including memory model
– SC and TSO, hopefully will do other memory models in the future

(3)Reasonable memory and CPU overhead
– OK for Tiny RCU and some tiny uses of concurrent RCU
– Jury is out for concurrent linked-list manipulations
– “If you live by heuristics, you will die by heuristics”

(4)Map to source code line(s) containing the bug
– Yes, reasonably good backtrace capability

(5)Modest input outside of source code under test
– Yes, modest boilerplate required, can use existing assertions

(6)Find relevant bugs
– Jury still out

Kroening, Clarke, and Lerda, “A tool for checking ANSI-C programs”, Tools and
Algorithms for the Construction and Analysis of Systems, 2004, pp. 168-176.

© 2015 IBM Corporation46

CS 362, Oregon State University, June 2, 2015

Ongoing Work

Ahmed, Groce, and Jensen: Use mutation generation and
formal verification to find holes in rcutorture

Liang, Tautschnig, and Kroening: Experiments verifying RCU
and uses of RCU using CBMC

Alglave: Derive formal memory model for Linux kernel
–Including RCU

© 2015 IBM Corporation47

CS 362, Oregon State University, June 2, 2015

Formal Verification Challenge

© 2015 IBM Corporation48

CS 362, Oregon State University, June 2, 2015

Formal Verification Challenge

Testing has many shortcomings
–Cannot find bugs in code not exercised
–Cannot reasonably exhaustively test even small software systems

Nevertheless, a number of independently developed test
harnesses have found bugs in Linux-kernel RCU

–Trinity, 0-day test robot, -next testing

As far as I know, no independently developed formal-
verification model has yet found a bug in Linux-kernel RCU

–Therefore, this challenge:

© 2015 IBM Corporation49

CS 362, Oregon State University, June 2, 2015

Formal Verification Challenge

Can you verify SYSIDLE from C source?
–Or, of course, find a bug

This Verification Challenge 2:
–http://paulmck.livejournal.com/38016.html

Mathieu Desnoyers and I verified (separately) with Promela:
– https://www.kernel.org/pub/linux/kernel/people/paulmck/Validation/sysidle/

But neither Promela/spin is not suitable for regression testing

Can your formal-verification tool regression-test SYSIDLE?

© 2015 IBM Corporation50

CS 362, Oregon State University, June 2, 2015

To Probe Deeper (RCU)
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination” (also in July 2013 CACM)
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy of Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)

© 2015 IBM Corporation51

CS 362, Oregon State University, June 2, 2015

To Probe Deeper (1/5)
 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/

– Turner et al: “PerCPU Atomics”
• http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf

© 2015 IBM Corporation52

CS 362, Oregon State University, June 2, 2015

To Probe Deeper (2/5)
 Stream-based applications:

– Sutton: “Concurrent Programming With The Disruptor”
• http://www.youtube.com/watch?v=UvE389P6Er4
• http://lca2013.linux.org.au/schedule/30168/view_talk

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/

© 2015 IBM Corporation53

CS 362, Oregon State University, June 2, 2015

To Probe Deeper (3/5)
 Hardware lock elision: Overviews

– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”
• http://queue.acm.org/detail.cfm?id=2579227

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900

© 2015 IBM Corporation54

CS 362, Oregon State University, June 2, 2015

To Probe Deeper (4/5)
 RCU

– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”
• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf

© 2015 IBM Corporation55

CS 362, Oregon State University, June 2, 2015

To Probe Deeper (5/5)
 RCU theory and semantics, academic contributions (partial list)

– Gamsa et al., “Tornado: Maximizing Locality and Concurrency in a Shared Memory
Multiprocessor Operating System”

• http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
– McKenney, “Exploiting Deferred Destruction: An Analysis of RCU Techniques”

• http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
– Hart, “Applying Lock-free Techniques to the Linux Kernel”

• http://www.cs.toronto.edu/~tomhart/masters_thesis.html
– Olsson et al., “TRASH: A dynamic LC-trie and hash data structure”

• http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4281239
– Desnoyers, “Low-Impact Operating System Tracing”

• http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
– Dalton, “The Design and Implementation of Dynamic Information Flow Tracking ...”

• http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
– Gotsman et al., “Verifying Highly Concurrent Algorithms with Grace (extended version)”

• http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf
– Liu et al., “Mindicators: A Scalable Approach to Quiescence”

• http://dx.doi.org/10.1109/ICDCS.2013.39
– Tu et al., “Speedy Transactions in Multicore In-memory Databases”

• http://doi.acm.org/10.1145/2517349.2522713
– Arbel et al., “Concurrent Updates with RCU: Search Tree as an Example”

• http://www.cs.technion.ac.il/~mayaarl/podc047f.pdf

© 2015 IBM Corporation56

CS 362, Oregon State University, June 2, 2015

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

© 2015 IBM Corporation57

CS 362, Oregon State University, June 2, 2015

Questions?

	IBM Presentation Template Full Version
	Selecting a template
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

