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Two Definitions and a Consequence

A non-trivial software system contains at least one bug

A reliable software system contains no known bugs

Therefore, any non-trivial reliable software system contains at 
least one bug that you don't know about

Yet there are more than a billion users of the Linux kernel
–In practice, validation is about reducing risk
–Can formal verification now take a front-row seat in this risk reduction?

What would need to happen for me to include formal 
verification in my RCU regression testing?



© 2015 IBM Corporation9

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing



© 2015 IBM Corporation10

CS 362, Oregon State University, June 2, 2015

Current RCU Regression Testing
But First, What Is RCU (Read-Copy Update)?
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RCU Is A Synchronization Mechanism That Avoids 
Contention and Expensive Hardware Operations

16-CPU 2.8GHz Intel X5550 (Nehalem) System16-CPU 2.8GHz Intel X5550 (Nehalem) System

Operation Cost (ns) Ratio
Clock period 0.4 1
“Best-case” CAS 12.2 33.8
Best-case lock 25.6 71.2
Single cache miss 12.9 35.8
CAS cache miss 7.0 19.4

31.2 86.6
31.2 86.5
92.4 256.7
95.9 266.4

Single cache miss (off-core)
CAS cache miss (off-core)
Single cache miss (off-socket)
CAS cache miss (off-socket)

Typical synchronization 
mechanisms do this a lot,
plus suffer from contention

Heavily 
optimized 

reader-writer 
lock might get 

here for readers 
(but too bad 
about those 

poor writers...)

Want to be here!
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RCU Has Exceedingly Lightweight Readers

 In non-preemptible (run-to-block) environments, lightest-
weight conceivable read-side primitives

–#define rcu_read_lock()
–#define rcu_read_unlock()
–RCU readers are clearly extremely weakly ordered
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RCU Has Exceedingly Lightweight Readers

 In non-preemptible (run-to-block) environments, lightest-weight 
conceivable read-side primitives

–#define rcu_read_lock()
–#define rcu_read_unlock()
–RCU readers are clearly extremely weakly ordered

Best possible performance, scalability, real-time response, wait-
freedom, and energy efficiency

Uses indirect reasoning to determine when readers are done
–In preemptible environments, rcu_read_lock() and rcu_read_unlock() 

manipulate per-thread variables

References:
– McKenney and Slingwine: “Read-Copy Update: Using Execution History to Solve Concurrency 

Problems”, PDCS 1998
– Desnoyers, McKenney, Stern, Dagenais, and Walpole: “User-Level Implementations of Read-

Copy Update”, Feb. 2012 IEEE TPDS
– Additional references in backup slides
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Publication of And Subscription to New Data
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Key: Dangerous for updates: all readers can access
Still dangerous for updates: pre-existing readers can access (backup)
Safe for updates: inaccessible to all readers

readerp p p

See “To probe deeper” slides for more informationSee “To probe deeper” slides for more information
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RCU Removal From Linked List

 Combines waiting for readers and multiple versions:
– Writer removes the cat's element from the list (list_del_rcu())

– Writer waits for all readers to finish (synchronize_rcu())

– Writer can then free the cat's element (kfree())
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Waiting for Pre-Existing Readers

 Non-preemptive environment (CONFIG_PREEMPT=n)
– RCU readers are not permitted to block
– Same rule as for tasks holding spinlocks

 CPU context switch means all that CPU's readers are done

 Grace period ends after all CPUs execute a context switch

synchronize_rcu()

CPU 0

CPU 1

CPU 2

co
nt

ex
t  

sw
itc

h

Grace Period

RCU re
ad

er

remove data free data
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Toy Implementation of RCU: 20 Lines of Code

 Read-side primitives:
#define rcu_read_lock()
#define rcu_read_unlock()
#define rcu_dereference(p) \
({ \
        typeof(p) _p1 = (*(volatile typeof(p)*)&(p)); \
        smp_read_barrier_depends(); \
        _p1; \
})

 Update-side primitives
#define rcu_assign_pointer(p, v) \
({ \
        smp_wmb(); \
        (p) = (v); \
})
void synchronize_rcu(void)
{
        int cpu;

        for_each_online_cpu(cpu)
                run_on(cpu);
}

Only 9 of which are needed on sequentially consistent systems
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RCU Performance: Read-Only Hash Table

RCU and hazard pointers scale quite well!!! 
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RCU Area of Applicability

Update-Mostly, Need Consistent Data
(RCU is Really Unlikely to be the Right Tool For The Job, But It Can:
(1) Provide Existence Guarantees For Update-Friendly Mechanisms

(2) Provide Wait-Free Read-Side Primitives for Real-Time Use)

Read-Write, Need Consistent Data
(RCU Might Be OK...)

Read-Mostly, Need Consistent Data
(RCU Works OK)

Read-Mostly, Stale &
Inconsistent Data OK
(RCU Works Great!!!)



© 2015 IBM Corporation21

CS 362, Oregon State University, June 2, 2015

RCU Applicability to the Linux Kernel
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Current RCU Regression Testing
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Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/ 
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Current RCU Regression Testing

Stress-test suite: “rcutorture”
–http://lwn.net/Articles/154107/, http://lwn.net/Articles/622404/

 “Intelligent fuzz testing”: “trinity”
–http://codemonkey.org.uk/projects/trinity/

Test suite including static analysis: “0-day test robot”
–https://lwn.net/Articles/514278/

 Integration testing: “linux-next tree”
–https://lwn.net/Articles/571980/

Above is old technology – but not entirely ineffective
–2010: wait for -rc3 or -rc4.  2013: No problems with -rc1

Formal verification in design, but not in regression testing
–http://lwn.net/Articles/243851/, https://lwn.net/Articles/470681/, 

https://lwn.net/Articles/608550/ 
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How Well Does Linux-Kernel Testing Really Work?
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Example 1: RCU-Scheduler Mutual Dependency

RCU Scheduler

Synchronization

Schedule Threads
Priority Boosting

Interrupt Handling
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So, What Was The Problem?

Found during testing of Linux kernel v3.0-rc7:
–RCU read-side critical section is preempted for an extended period
–RCU priority boosting is brought to bear
–RCU read-side critical section ends, notes need for special processing
–Interrupt invokes handler, then starts softirq processing
–Scheduler invoked to wake ksoftirqd kernel thread:

• Acquires runqueue lock and enters RCU read-side critical section
• Leaves RCU read-side critical section, notes need for special processing
• Because in_irq() returns false, special processing attempts deboosting
• Which causes the scheduler to acquire the runqueue lock
• Which results in self-deadlock

–(See http://lwn.net/Articles/453002/ for more details.)

Fix: Add separate “exiting read-side critical section” state
–Also validated my creation of correct patches – without testing!

Note: Remains a bug even under SC
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Example 1: Bug Was Located By Normal Testing
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Example 2: Grace Period Cleanup/Initialization Bug

1. CPU 0 completes grace period, starts new one, cleaning up and initializing up through first 
leaf rcu_node structure

2. CPU 1 passes through quiescent state (new grace period!)

3. CPU 1 does rcu_read_lock() and acquires reference to A

4. CPU 16 exits dyntick-idle mode (back on old grace period)

5. CPU 16 removes A, passes it to call_rcu()

6. CPU 16 associates callback with next grace period

7. CPU 0 completes cleanup/initialization of rcu_node structures

8. CPU 16 callback associated with now-current grace period

9. All remaining CPUs pass through quiescent states

10. Last CPU performs cleanup on all rcu_node structures

11. CPU 16 notices end of grace period, advances callback to “done” state

12. CPU 16 invokes callback, freeing A (too bad CPU 1 is still using it)

Not found via Linux-kernel validation: In production for 5 years! 
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Example 2: Grace Period Cleanup/Initialization Bug

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Free A

Still
Using A!!!Grace 

Period 0
Grace 

Period 1
Grace 

Period 2

Grace 
Period 0

Grace 
Period 1

Grace 
Period 2

Note: Remains a bug even under SC
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Example 2: Grace Period Cleanup/Initialization Fix

CPU 0

CPU 1

CPU 15

CPU 16

CPU 17

CPU 31

QS

QS

QS

Idle

Idle

Idle

Idle Remove A QS

Read A

QS

Grace 
Period 0

Grace Period
intermission

Grace 
Period 1

Grace 
Period 0

Grace 
Period 1

Grace Period
intermission

Cannot yet free A

All agree that grace period 1 starts after grace period 0 ends
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Example 1 & Example 2 Results

Example 1: Bug was located by normal Linux test procedures

Example 2: Bug was missed by normal Linux test procedures
–Not found via Linux-kernel validation: In production for 5 years!
–On systems with up to 4096 CPUs...

Both are bugs even under sequential consistency

Can formal verification do better?
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Why Formal Verification?



© 2015 IBM Corporation34

CS 362, Oregon State University, June 2, 2015

Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5
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Why Formal Verification?

At least one billion embedded Linux devices
–A bug that occurs once per million years manifests three times per day
–But assume a 1% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 device-years of RCU per year: p(RCU) = 10-5

At least 20 million Linux servers
–A bug that occurs once per million years manifests twice per month
–Assume 50% duty cycle, 10% in the kernel, and 1% of that in RCU
–10,000 system-years of RCU per year: p(RCU) = 5(10-4)

But assume bugs are races between pairs of random events
–N-CPU probability of RCU race bug: p(bug)=(p(RCU)/N)2N(N-1)/2
–Assume rcutorture p(RCU)=1, compute rcutorture speedup:

• Embedded: 1010: 36.5 days of rcutorture testing covers one year
• Server: 4(106): 250 years of rcutorture testing covers one year
• Linux kernel releases are only about 60 days apart: RCU is moving target



© 2015 IBM Corporation37

CS 362, Oregon State University, June 2, 2015

How Does RCU Work Without Formal Verification?

What is validation strategy for 20M server systems?
–Other failures mask those of RCU, including hardware failures

• I know of no human artifact with a million-year MTBF
–Increasing CPUs on test system increases race probability

• And many systems have relatively few CPUs
–Rare but critical operations can be forced to happen more frequently

• CPU hotplug, expedited grace periods, RCU barrier operations...
–Knowledge of possible race conditions allows targeted tests

• Plus other dirty tricks learned in 25 years of testing concurrent software
• Provide harsh environment to force software to evolve quickly

–Formal verification is used for some aspects of RCU design
• Dyntick idle, sysidle, NMI interactions

But it would be valuable to use formal verification as part of 
RCU's regression testing!
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Formal Verification and Regression Testing:  
Requirements
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Formal Verification and Regression Testing:  
Requirements

(1)Either automatic translation or no translation required
– Automatic discarding of irrelevant portions of the code
– Manual translation provides opportunity for human error

(2)Correctly handle environment, including memory model
– The QRCU validation benchmark is an excellent cautionary tale

(3)Reasonable memory and CPU overhead
– Bugs must be located in practice as well as in theory
– Linux-kernel RCU is 15KLoC and release cycles are short

(4)Map to source code line(s) containing the bug
– “Something is wrong somewhere” is not a helpful diagnostic: I already know bugs exist

(5)Modest input outside of source code under test
– Preferably glean much of the specification from the source code itself (empirical spec!)

(6)Find relevant bugs
– Low false-positive rate, weight towards likelihood of occurrence (fixes create bugs!)
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Formal Validation Tools Used and Regression Testing

Promela and Spin
– Holzmann: “The Spin Model Checker”
– I have used Promela/Spin in design for more than 20 years, but:

• Limited problem size, long run times, large memory consumption
• Does not implement memory models (assumes sequential consistency)
• Special language, difficult to translate from C

ARMMEM and PPCMEM (2)
– Alglave, Maranget, Pawan, Sarkar, Sewell, Williams, Nardelli: 

“PPCMEM/ARMMEM: A Tool for Exploring the POWER and ARM Memory 
Models”

• Very limited problem size, long run times, large memory consumption
• Restricted pseudo-assembly language, manual translation required

Herd (2, 3)
– Alglave, Maranget, and Tautschnig: “Herding Cats: Modelling, Simulation, 

Testing, and Data-mining for Weak Memory”
• Very limited problem size (but much improved run times and memory consumption)
• Restricted pseudo-assembly language, manual translation required

Useful, but not for regression testing
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Promela Model of Incorrect Atomic Increment (1/2)

  1 #define NUMPROCS 2
  2 
  3 byte counter = 0;
  4 byte progress[NUMPROCS];
  5 
  6 proctype incrementer(byte me)
  7 {
  8   int temp;
  9 
 10   temp = counter;
 11   counter = temp + 1;
 12   progress[me] = 1;
 13 }
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Promela Model of Incorrect Atomic Increment (2/2)
 15 init {
 16   int i = 0;
 17   int sum = 0;
 18 
 19   atomic {
 20     i = 0;
 21     do
 22     :: i < NUMPROCS ­>
 23       progress[i] = 0;
 24       run incrementer(i);
 25       i++
 26     :: i >= NUMPROCS ­> break
 27     od;
 28   }
 29   atomic {
 30     i = 0;
 31     sum = 0;
 32     do
 33     :: i < NUMPROCS ­>
 34       sum = sum + progress[i];
 35       i++
 36     :: i >= NUMPROCS ­> break
 37     od;
 38     assert(sum < NUMPROCS || counter == NUMPROCS)
 39   }
 40 }
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PPCMEM Example Litmus Test for IRIW

PPC IRIW.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1;         1:r4=y;
2:      2:r2=x; 2:r4=y; 
3:      3:r2=x; 3:r4=y; 
}
 P0           | P1           | P2                 | P3                 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2)       | lwz r3,0(r4)       ;
              |              | sync               | sync               ;
              |              | lwz r5,0(r4)       | lwz r5,0(r2)       ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

Fourteen CPU hours and 10 GB of memory



© 2015 IBM Corporation44

CS 362, Oregon State University, June 2, 2015

Herd Example Litmus Test for Incorrect IRIW

PPC IRIW­lwsync­f.litmus
""
(* Traditional IRIW. *)
{
0:r1=1; 0:r2=x;
1:r1=1;         1:r4=y;
2:      2:r2=x; 2:r4=y; 
3:      3:r2=x; 3:r4=y; 
}
 P0           | P1           | P2                 | P3                 ;
 stw r1,0(r2) | stw r1,0(r4) | lwz r3,0(r2)       | lwz r3,0(r4)       ;
              |              | lwsync             | lwsync             ;
              |              | lwz r5,0(r4)       | lwz r5,0(r2)       ;

exists
(2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)

. . .

Positive: 1 Negative: 15
Condition exists (2:r3=1 /\ 2:r5=0 /\ 3:r3=1 /\ 3:r5=0)
Observation IRIW Sometimes 1 15
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Cautiously Optimistic For Future CBMC Version

(1)Either automatic translation or no translation required
– No translation required from C, discards irrelevant code quite well

(2)Correctly handle environment, including memory model
– SC and TSO, hopefully will do other memory models in the future

(3)Reasonable memory and CPU overhead
– OK for Tiny RCU and some tiny uses of concurrent RCU
– Jury is out for concurrent linked-list manipulations
– “If you live by heuristics, you will die by heuristics”

(4)Map to source code line(s) containing the bug
– Yes, reasonably good backtrace capability

(5)Modest input outside of source code under test
– Yes, modest boilerplate required, can use existing assertions

(6)Find relevant bugs
– Jury still out

Kroening, Clarke, and Lerda, “A tool for checking ANSI-C programs”, Tools and 
Algorithms for the Construction and Analysis of Systems, 2004, pp. 168-176.
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Ongoing Work

Ahmed, Groce, and Jensen: Use mutation generation and 
formal verification to find holes in rcutorture

Liang, Tautschnig, and Kroening: Experiments verifying RCU 
and uses of RCU using CBMC

Alglave: Derive formal memory model for Linux kernel
–Including RCU
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Formal Verification Challenge
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Formal Verification Challenge

Testing has many shortcomings
–Cannot find bugs in code not exercised
–Cannot reasonably exhaustively test even small software systems

Nevertheless, a number of independently developed test 
harnesses have found bugs in Linux-kernel RCU

–Trinity, 0-day test robot, -next testing

As far as I know, no independently developed formal-
verification model has yet found a bug in Linux-kernel RCU

–Therefore, this challenge:
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Formal Verification Challenge

Can you verify SYSIDLE from C source?
–Or, of course, find a bug

This Verification Challenge 2:
–http://paulmck.livejournal.com/38016.html 

Mathieu Desnoyers and I verified (separately) with Promela:
– https://www.kernel.org/pub/linux/kernel/people/paulmck/Validation/sysidle/ 

But neither Promela/spin is not suitable for regression testing

Can your formal-verification tool regression-test SYSIDLE?
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To Probe Deeper (RCU)
 https://queue.acm.org/detail.cfm?id=2488549

– “Structured Deferral: Synchronization via Procrastination” (also in July 2013 CACM)
 http://doi.ieeecomputersociety.org/10.1109/TPDS.2011.159 and 

http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf
– “User-Level Implementations of Read-Copy Update”

 git://lttng.org/userspace-rcu.git (User-space RCU git tree)
 http://people.csail.mit.edu/nickolai/papers/clements-bonsai.pdf

– Applying RCU and weighted-balance tree to Linux mmap_sem.
 http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf

– RCU-protected resizable hash tables, both in kernel and user space
 http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf

– Combining RCU and software transactional memory
 http://wiki.cs.pdx.edu/rp/: Relativistic programming, a generalization of RCU
 http://lwn.net/Articles/262464/, http://lwn.net/Articles/263130/, http://lwn.net/Articles/264090/

– “What is RCU?” Series
 http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

– RCU motivation, implementations, usage patterns, performance (micro+sys)
 http://www.livejournal.com/users/james_morris/2153.html

– System-level performance for SELinux workload: >500x improvement
 http://www.rdrop.com/users/paulmck/RCU/hart_ipdps06.pdf

– Comparison of RCU and NBS (later appeared in JPDC)
 http://doi.acm.org/10.1145/1400097.1400099

– History of RCU in Linux (Linux changed RCU more than vice versa)
 http://read.seas.harvard.edu/cs261/2011/rcu.html

– Harvard University class notes on RCU (Courtesy of Eddie Koher)
 http://www.rdrop.com/users/paulmck/RCU/ (More RCU information)
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 Hash tables:

– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook-e1.html Chapter 10

 Split counters:
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Chapter 5
– http://events.linuxfoundation.org/sites/events/files/slides/BareMetal.2014.03.09a.pdf 

 Perfect partitioning
– Candide et al: “Dynamo: Amazon's highly available key-value store”

• http://doi.acm.org/10.1145/1323293.1294281 
– McKenney: “Is Parallel Programming Hard, And, If So, What Can You Do About It?”

• http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 6.5 
– McKenney: “Retrofitted Parallelism Considered Grossly Suboptimal”

• Embarrassing parallelism vs. humiliating parallelism
• https://www.usenix.org/conference/hotpar12/retro%EF%AC%81tted-parallelism-considered-

grossly-sub-optimal  
– McKenney et al: “Experience With an Efficient Parallel Kernel Memory Allocator”

• http://www.rdrop.com/users/paulmck/scalability/paper/mpalloc.pdf 
– Bonwick et al: “Magazines and Vmem: Extending the Slab Allocator to Many CPUs and Arbitrary 

Resources”
• http://static.usenix.org/event/usenix01/full_papers/bonwick/bonwick_html/ 

– Turner et al: “PerCPU Atomics”
•  http://www.linuxplumbersconf.org/2013/ocw//system/presentations/1695/original/LPC%20-

%20PerCpu%20Atomics.pdf
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 Stream-based applications:

– Sutton: “Concurrent Programming With The Disruptor”
• http://www.youtube.com/watch?v=UvE389P6Er4 
• http://lca2013.linux.org.au/schedule/30168/view_talk 

– Thompson: “Mechanical Sympathy”
• http://mechanical-sympathy.blogspot.com/

 Read-only traversal to update location
– Arcangeli et al: “Using Read-Copy-Update Techniques for System V IPC in the Linux 2.5 

Kernel”
• https://www.usenix.org/legacy/events/usenix03/tech/freenix03/full_papers/arcangeli/arcan

geli_html/index.html 
– Corbet: “Dcache scalability and RCU-walk”

• https://lwn.net/Articles/419811/ 
– Xu: “bridge: Add core IGMP snooping support”

• http://kerneltrap.com/mailarchive/linux-netdev/2010/2/26/6270589 
– Triplett et al., “Resizable, Scalable, Concurrent Hash Tables via Relativistic Programming”

• http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf 
– Howard: “A Relativistic Enhancement to Software Transactional Memory”

• http://www.usenix.org/event/hotpar11/tech/final_files/Howard.pdf 
– McKenney et al: “URCU-Protected Hash Tables”

• http://lwn.net/Articles/573431/
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To Probe Deeper (3/5)
 Hardware lock elision: Overviews

– Kleen: “Scaling Existing Lock-based Applications with Lock Elision”
• http://queue.acm.org/detail.cfm?id=2579227 

 Hardware lock elision: Hardware description
– POWER ISA Version 2.07

• http://www.power.org/documentation/power-isa-version-2-07/ 
– Intel® 64 and IA-32 Architectures Software Developer Manuals

• http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html 
– Jacobi et al: “Transactional Memory Architecture and Implementation for IBM System z”

• http://www.microsymposia.org/micro45/talks-posters/3-jacobi-presentation.pdf 

 Hardware lock elision: Evaluations
– http://pcl.intel-research.net/publications/SC13-TSX.pdf 
– http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html Section 16.3

 Hardware lock elision: Need for weak atomicity
– Herlihy et al: “Software Transactional Memory for Dynamic-Sized Data Structures”

• http://research.sun.com/scalable/pubs/PODC03.pdf 
– Shavit et al: “Data structures in the multicore age”

• http://doi.acm.org/10.1145/1897852.1897873 
– Haas et al: “How FIFO is your FIFO queue?”

• http://dl.acm.org/citation.cfm?id=2414731 
– Gramoli et al: “Democratizing transactional programming”

• http://doi.acm.org/10.1145/2541883.2541900 
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 RCU

– Desnoyers et al.: “User-Level Implementations of Read-Copy Update”
• http://www.rdrop.com/users/paulmck/RCU/urcu-main-accepted.2011.08.30a.pdf 
• http://www.computer.org/cms/Computer.org/dl/trans/td/2012/02/extras/ttd2012020375s.pdf 

– McKenney et al.: “RCU Usage In the Linux Kernel: One Decade Later”
• http://rdrop.com/users/paulmck/techreports/survey.2012.09.17a.pdf 
• http://rdrop.com/users/paulmck/techreports/RCUUsage.2013.02.24a.pdf 

– McKenney: “Structured deferral: synchronization via procrastination”
• http://doi.acm.org/10.1145/2483852.2483867 

– McKenney et al.: “User-space RCU” https://lwn.net/Articles/573424/ 

 Possible future additions
– Boyd-Wickizer: “Optimizing Communications Bottlenecks in Multiprocessor Operating 

Systems Kernels”
• http://pdos.csail.mit.edu/papers/sbw-phd-thesis.pdf 

– Clements et al: “The Scalable Commutativity Rule: Designing Scalable Software for 
Multicore Processors”

• http://www.read.seas.harvard.edu/~kohler/pubs/clements13scalable.pdf 
– McKenney: “N4037: Non-Transactional Implementation of Atomic Tree Move”

• http://www.rdrop.com/users/paulmck/scalability/paper/AtomicTreeMove.2014.05.26a.pdf 
– McKenney: “C++ Memory Model Meets High-Update-Rate Data Structures”

• http://www2.rdrop.com/users/paulmck/RCU/C++Updates.2014.09.11a.pdf
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To Probe Deeper (5/5)
 RCU theory and semantics, academic contributions (partial list)

– Gamsa et al., “Tornado: Maximizing Locality and Concurrency in a Shared Memory 
Multiprocessor Operating System”

• http://www.usenix.org/events/osdi99/full_papers/gamsa/gamsa.pdf
– McKenney, “Exploiting Deferred Destruction: An Analysis of RCU Techniques”

• http://www.rdrop.com/users/paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
– Hart, “Applying Lock-free Techniques to the Linux Kernel”

• http://www.cs.toronto.edu/~tomhart/masters_thesis.html
– Olsson et al., “TRASH: A dynamic LC-trie and hash data structure”

• http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4281239
– Desnoyers, “Low-Impact Operating System Tracing”

• http://www.lttng.org/pub/thesis/desnoyers-dissertation-2009-12.pdf
– Dalton, “The Design and Implementation of Dynamic Information Flow Tracking ...”

• http://csl.stanford.edu/~christos/publications/2009.michael_dalton.phd_thesis.pdf
– Gotsman et al., “Verifying Highly Concurrent Algorithms with Grace (extended version)”

• http://software.imdea.org/~gotsman/papers/recycling-esop13-ext.pdf 
– Liu et al., “Mindicators: A Scalable Approach to Quiescence”

• http://dx.doi.org/10.1109/ICDCS.2013.39
– Tu et al., “Speedy Transactions in Multicore In-memory Databases”

• http://doi.acm.org/10.1145/2517349.2522713
– Arbel et al., “Concurrent Updates with RCU: Search Tree as an Example”

• http://www.cs.technion.ac.il/~mayaarl/podc047f.pdf
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Legal Statement

This work represents the view of the author and does not 
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks 
of International Business Machines Corporation in the United 
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be 
trademarks or service marks of others.
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