High-Speed Event-Counting and -Classification
Using a Dictionary Hash Technique*

Paul E. McKenney
Information Sciences and Technology Division
SRI International
pmckenne@us.ibm.com

Jacob N. Sarvela
Department of Mathematics
San Jose State University

March 13, 1999

Abstract

This paper presents a “dictionary hash” technique that, when presented with a
large group of labeled events, can stochastically determine the number of unique labels
quickly and with a small amount of memory. This technique is applicable to areas such
as signal processing, process monitoring and control, and computer communications
network monitoring and control.

As a specific example, this paper focuses on application of this technique to congestion-
avoidance algorithms in high-speed computer-communications networks. In this appli-
cation, the events are packet! arrivals at a particular network node, and the labels
consist of the source and destination addresses in the packets. The set of all packets
with a particular source/destination address pair constitutes a “session”; the more so-
phisticated congestion-avoidance algorithms require knowledge of the number of active
sessions. This knowledge can be provided in an effective and timely manner by the
dictionary hash technique presented in this paper.

The technique is configurable to any desired degree of accuracy and lends itself to
a simple realization in high-speed parallel hardware. This paper will describe how to
optimize performance of both hardware and software implementations of the dictionary
hash technique.

*This work was supported by the Defense Advanced Research Projects Agency (DARPA) under contract
NOO140-87-C-8907 and by SRI IR&D.
'A “packet” is a block of information that is switched through the network as a unit.

1 INTRODUCTION 2

Keywords: high-speed networks, congestion avoidance, network monitoring, process con-
trol, probabilistic set membership.

1 Introduction

In this section, we will focus on a specific application (congestion avoidance in high-speed
networks), and show how that application can benefit from event counting and classification.

Queueing theory predicts that equilibrium queue lengths will increase without bound as
the load offered to a store-and-forward network approaches the capacity of the network [1].
Furthermore, many protocols will inflict a sudden increase in offered load upon the network
(due to retransmissions) when the round-trip delay rises above a certain level [2]. This can
cause the load carried by the network to decrease as the offered load increases, leading to
congestive collapse.

This effect has been observed in production networks, for example, in ARPANET [3].
Congestive collapse causes very inefficient use of network resources, unreliable data transfer
(i.e., a large fraction of the data entering the network fails to reach its destination), unfair
allocation of resources, and extremely long queueing delays. Since these effects are clearly
undesirable, there is an incentive to develop algorithms that control networks in a way that
avoids this problem.

To date, only the simplest congestion-avoidance algorithms have been seriously con-
sidered for use in production networks [3, 4, 5]. Two of these base their action on simple
speed-up/slow-down signals sent from intermediate nodes to the source node, and thus must
strike a compromise between steady-state oscillation and slow response to changes in net-
work state. The third avoids this trade-off by use of direct rate control of sessions; however,
it is subject to making inappropriate adjustments of the session rates because it lacks the
information needed to estimate the effects of its adjustments.

More sophisticated algorithms [6, 7, 8] use knowledge of the number of sessions flowing
through each node to avoid these problems. The dictionary hash technique presented in
this paper provides this knowledge in an effective and timely manner.

This paper presents the dictionary hash algorithm and compares it to similar algorithms
used in probabilistic spelling-checkers. The algorithm is analyzed to show the mean and
variance of the error probability for both single-hash and multiple-hash variants. This
analysis is used to determine the optimal number of hash functions for both software and
hardware implementations of the algorithm. Finally, a relaxation method that promises to
further increase the accuracy of the algorithm is presented.

The dictionary hash algorithm will be seen to provide an effective method for counting
classes of events. This algorithm may be implemented either in software in real-time systems
or as high-speed parallel hardware, and may be tuned to any desired degree of accuracy.

2 DESCRIPTION OF DICTIONARY HASH TECHNIQUE 3

1.1 Alternative Techniques

This section examines alternatives to the dictionary hash technique and shows how each is
deficient for high-speed applications.

The simplest and fastest way of remembering which labels have already been counted
is to use a simple array, indexed by a number that uniquely identifies the things being
counted. For example, the Internet has relatively small 32-bit addresses, so that a session
is uniquely identified by a 64-bit quantity. Unfortunately, this results in an infeasible 264
element array.

Various types of search trees are heavily used in database applications [9]. These meth-
ods are relatively slow (requiring numerous memory references) and require complex control
circuitry, making them unsuitable for use in switches operating in gigabit-per-second net-
works. Furthermore, these methods require a memory-allocation scheme, which makes them
prone to sudden failure when memory is exhausted.

If the events can be marked and if all events carrying a particular label are produced by
a single source, then each source can specially mark one of the events carrying a particular
label during each measurement period. The number of these specially marked events can
then be simply counted. However, this scheme is subject to large inaccuracies if events can
be lost (e.g., due to bit errors or congestion in communications networks) or if there are
random delays in the system (e.g., due to queueing). Furthermore, this scheme requires
that the entire system agree on a single value for the measurement period.

2 Description of Dictionary Hash Technique

The dictionary hash technique is based on an algorithm described and analyzed by Carter
et al. [10].2 Carter’s algorithm is summarized here, as it provides a good base for under-
standing our algorithm.

Carter’s algorithm maintains a bit-vector that is indexed by multiple hash functions.
The bit vector is initialized by first setting the entire vector to zero, then setting to one
those bits that are indexed by one of the hash functions when applied to the words in the
dictionary. Later, any word that hashes to a zero-bit is known to be misspelled. A word
that hashes to all one-bits has probability (1 —e€) of being in the dictionary, where e depends
on the size of the vector, the number of hash functions, and the number of words in the
dictionary, as will be shown in Section 3.

This algorithm can be used to count stochastically the number of sessions passing
through a node in a high-speed network during a predetermined measurement period. As

3

2This algorithm is used by some spelling-checkers.
3See Sedgewick [11] for a definition of hash functions and a description of how they are used.

2 DESCRIPTION OF DICTIONARY HASH TECHNIQUE 4

before, the bit vector is initially zeroed. As each packet arrives at the node, a string consist-
ing of that packet’s source and destination address is hashed by each of the hash functions.
If the bit indexed by any of the hash functions is a zero-bit, the packet is known to belong
to a session that has not yet been counted. If all the bits indexed by the hash functions are
one-bits, the packet has some probability (1 — €) of belonging to a session that has already
been counted. (Section 3 describes how to make this probability arbitrarily close to 1.) Any
zero-bits indexed by a hash function are set to one, thus a subsequent packet belonging to
the same session will be recognized as having already been counted.

2.1 Modifications for Real-Time Use

Carter’s algorithm requires that the entire bit-vector be set to zero at the beginning of
each measurement period. This operation causes delays that are intolerable in real-time
systems such as our high-speed network application. Thus, the algorithm must be modified
to avoid this delay by replacing the bit-vector with a vector of sequence numbers. A
global sequence number is incremented at the beginning of each measurement period; where
Carter’s algorithm would check for bits being set, the new algorithm checks for equality to
the current global sequence number. If at least one of the sequence numbers in the vector
differs from the current global sequence number, the packet belongs to a session that has
not yet been counted, otherwise, the packet has some probability (1 — €) of belonging to a
session that has already been counted.

Two important boundary conditions must be accounted for: overflow of the global
sequence number and persistence of errors from one measurement period to the next.

In order to prevent old sequence numbers from persisting for a full cycle of the global
sequence number, a roving pointer? into the vector must be maintained. At the beginning
of each measurement period, the entry currently pointed to is set to an illegal sequence
number (e.g., if 16-bit unsigned sequence number ranges from zero to 32767, then 65535 is
an illegal sequence number). The number of legal values for the sequence number must be
greater than the number of entries in the vector (and thus the word size of the sequence
number must be at least [lg(7')] + 1, where “lg” is the base-2 logarithm and T is the size
of the vector).

Persistent errors are caused by distinct source/destination address pairs hashing to the
same values. These errors can be rendered temporary by including the current value of the
sequence number in the quantity to be hashed.

A software implementation of the modified algorithm with five hash functions would
execute the pseudo-code in Appendix A.1l upon receipt of each packet. The pseudo-code

*A “roving pointer” is an index into the vector of sequence numbers that is incremented at the end of
each measurement period. This index thus “roves” through the entire vector.

2 DESCRIPTION OF DICTIONARY HASH TECHNIQUE 5

in Appendix A.2 would be executed between measurement periods to manage the sequence
numbers.

2.2 Modifications for Implementation in Parallel Hardware

Since the dictionary hash technique is composed of simple operations and is of time com-
plexity O(1), it is an ideal candidate for implementation in hardware in very-high-speed
networks.

However, to allow a parallel implementation of the technique, each hash function must
be given its own private RAM vector (otherwise, costly and slow multiport RAMs would
be required). A block diagram of an implementation using three hash functions is shown
in Figure 1.

The source and destination addresses are extracted from each packet by the “Address
Extraction” unit. The addresses are passed in parallel to the “Hardware Hash” units, where
they are combined with the current sequence number by hashing functions to yield indexes.’
Possible candidates for the hashing function include cyclic redundancy check, checksums,
and linear combinations.

The indexes and the current sequence number are passed to the “RAM Lookup” units,
each of which performs a read-modify-write cycle to the RAM location addressed by its
index. If the value read from the RAM matches the current sequence number, the unit
asserts its “Found” line, and in any case writes the value of current sequence number to the
RAM location addressed by the index.

The three-input NAND gate at the bottom of the figure will assert the “Not In Table”
line if any of the “Found” lines are not asserted. Thus, the “Not In Table” line will be
asserted if the current packet belongs to a session that has not yet been counted. This line
may be used to control a counter that will produce the total number of sessions, or it might
feed into additional logic that classifies the packets by some criterion (thus producing the
number of sessions within each such class).

Each “Hardware Hash” unit must also implement a roving pointer into its RAM.® Each
time the sequence number is incremented, the RAM location addressed by the roving pointer
must be set to an illegal value, and the roving pointer must be incremented. This practice
scrubs old sequence numbers from the RAM.

Assuming that the RAM lookup for a packet is overlapped with the hashing of the next
packet,” the only performance requirement is that the hardware must be able to complete
a lookup in the time it takes for a minimum-sized packet to be received. Internet Protocol

SEach “Hardware Hash” unit must use a distinct hash function that is statistically independent from
that of the other units.

5Although a single roving pointer could be shared by all of the “Hardware Hash” units.

"This is possible since there is no feedback from the “RAM Lookup” units to the “Hardware Hash” units.

2 DESCRIPTION OF DICTIONARY HASH TECHNIQUE

S
Packet Addre.ss CAuence ~—Increment
Extraction Number
Address

Hardware Hardware Hardware

Hash 1 Hash 2 Hash 3
Index 1 Index 2 Index 3

RAM RAM RAM
Lookup 1 Lookup 2 Lookup 3
Found 1 Found 2 Found 3

> Not In Table

Figure 1: Hardware implementation.

3 ANALYSIS 7

(IP) packets will contain at least an IP header and a link-level header, each containing about
160 bits, for a total of about 320 bits, or about 267 nanoseconds on a 1.2 gigabit-per-second
communications line. This is well within the capabilities of current static RAM technology.

3 Analysis

The dictionary hash technique has a finite probability of error, i.e., of failure to recognize a
new session as distinct from other sessions.

The following sections analyze this error, first for single hash functions, then for multiple
hash functions. Design rules to aid in determining the optimal number of hash functions for
a given configuration are presented. Finally, the use of the relaxation technique to decrease
error is introduced.

3.1 Single Hash Function

Ideal hash functions are assumed throughout this paper; each hash function is assumed
to map the elements of its domain into its range randomly with a uniform probability
distribution [12]. This assumption reduces the analysis of the algorithm to that of a variant
of the well-known “occupancy problem” from probability theory [13]. This section outlines
an approach to this problem that produces variances as well as expected values of the
probability of error.

Defining p, » to be the probability that exactly k entries of a table of size T' will be filled
in after n distinct items have been added to the table, we obtain

T-k+1

T Pn-Llk-1- (1)

Pnk = Tpnfl,k +
The first term of the right-hand side is the probability that item n collided with a previous
item (and thus did not fill in an additional entry), and the second term is the probability
that item n did not collide with a previous item (and thus did fill in an additional entry).
The boundary conditions are pg; = 0 for k greater than 0, p, o = 0 for n greater than 0,
and pgo = 1. In other words, no entries will be filled in until at least one item has been
added to the table.
The moments of this probability distribution may be found through use of moment
generating functions (see Appendix B.1). These moments may be used to find exact values
for the expected value (E(k),) and variance (0?(k),) of k after n distinct items have been

added to the table: 1\"
E(k)y =T [1 - (1 - T)] (2)

3 ANALYSIS 8

o?(k)y = T(T —1) (1—%>R+T(1—%>R—T2 (1—%)%. (3)

The expected value and variance of the probability of error € (i.e., the probability of not
counting the next item added to the table) can be obtained by dividing Equations 2 and 3
by T and T2, respectively.

By defining a “fill factor” f equal to % and assuming large 7', we obtain the following
simpler expression for the expected value of the probability of error E(e):

E(e)=1-¢/. (4)

The error in this approximation will be less than 1% for T' greater than one hundred?.

3.2 Multiple Hash Functions

An implementation that uses m hash functions will have m vectors, each of size T. The
probability of error is the probability that all of them err (assuming large T'):

E(e), = (1 - (1 - %)n)m 5)

The variance for m hash functions, 2,(¢),, can be defined in terms of the first and second
moments for a single hash function (see Appendix B.2):

2m
: S))) (- 0e0))
1+ (1-2) - (= —(1-(1-= . (6
om(€)n (T T T T T (6)
Note the decrease in the variance for large m.

For optimization purposes, it is helpful to assume large 7" and to redefine T' to be the
sum of the sizes of the individual vectors, instead of the size of each of the vectors. Applying
these modifications to Equation 5 yields

E(e) = (1-¢™)". (7)

The following sections present design rules for selecting m.

8The temptation to approximate Equation 3 with o?(¢) = e;f must be resisted, since (1—1/T)7 converges
to e ! at a rate of only 1 /T. This makes it impossible to cancel the first and third terms of Equation 3, as

the magnitude of the remaining term would be on the order of the error in these two terms.

3 ANALYSIS 9

3.2.1 Software Implementation

Software implementations can increase the number of hash functions freely with insignificant
additional memory. Therefore, the optimal number of hash functions may be determined
by finding the minimum of Equation 7, which is located at

_log(e)
=) 8)

This expression, derived for multiple hash functions over multiple vectors, is identical to
the expression derived by Carter et al. [10] for multiple hash functions over a single vec-
tor because the performance of the single-vector and multiple-vector variants converges to
identical values for large table size [14].

Once m has been determined, T' may be computed by solving Equation 7, yielding

mn

(L —
log(1 —em)

(9)

As an example, assume that a network node needs to count up to 1000 sessions to an
accuracy of 1%. Substituting e = 0.01 into Equation 8, we obtain m = 6.644. Since m must
be an integer,” we substitute m = 6 and m = 7 into Equation 9, yielding 9617 and 9593
words, respectively. Thus, m = 7 and 7' = 9597 (rounding 9593 up to the nearest multiple
of seven) are optimal for this example.

3.2.2 Hardware Implementation

Hardware implementations should consider the cost of circuitry needed to implement each
hash function. If the cost of each word of memory is « and the cost of the circuitry
implementing each hash function is 8, then the optimal number of hash functions may be
found by minimizing

oT + Bm, (10)
subject to [from Equation 7]
e< (1—6_%) , (11)

where ¢ is the desired expected error rate. Since the objective function is linear, the min-
imum will be located on the boundary of the feasible region at a point where the slope of
the boundary is equal to the slope of the lines of equal cost. This point may be located by

9Thus, the two possible values for m may be found from Figure 2 by finding 0.01 on the “Expected Error”
axis and noting that the m = 6 and m = 7 curves intersect the axis on either side of this point.

3 ANALYSIS 10

solving the constraint for 7T', substituting the result into the objective function, and finding
the minimum. This procedure will yield the following:

B _ 1 em log(€) . (12)

an Jog(1 — 6%) - m(log(1l — 6%))2 (1 o 6%)

A graphical representation of this expression is shown in Figure 2.
To use this figure, find the point (e, O%) on the figure (where € is the expected error,
is the cost per unit for hash function circuitry, « is the cost per word of memory, and n is
the expected number of entries in the table). The optimal number of hash functions will be
given by the curve closest to this point. The vector size T" may then be determined using
Equation 9.

It is important to remember that « is the cost per word of memory and that the word
size must be at least [lg(T'/m)] + 1 bits.

For example, assume that the network node of the previous section (that needed to
count up to 1000 sessions within 1% accuracy) has a cost of $2000 per megabyte of memory
and $300 per hash function. Assuming that each memory word will require two bytes, we
get a cost of $0.00381 per word. The memory cost ratio will thus be 78.6, so we find the
point (.01, 78.6) on Figure 2, which lies between the m = 1 and m = 2 curves. Evaluating
Equation 9 for m = 1 and m = 2 yields 99499 words and 18982 words, respectively, and
when these values are substituted into Equation 10 we obtain costs of $679.55 and $672.41,
respectively. Thus, the optimal design has two hash functions and 18982 words of memory
(split into two banks of 9491 words apiece), and costs $672.41.

Note that the word size (16 bits) is greater than [lg(18982/2)] 4+ 1 = 15, as required.

3.3 Relaxation

The fact that the expected error can be obtained in closed form suggests application of the
relaxation technique from numerical analysis. For example, Equation 2 may be solved for
n, giving
- log(1 — %)
log(1 — %)
Since the value of T' is known in advance for a particular implementation, this expression
could be cast into tabular form to allow speedy evaluation.!? Additional work is needed to
determine the conditions under which relaxation is most effective.

(13)

101t is tempting to simplify this expression by assuming large T, but this reduces to n = k.

3 ANALYSIS

beta / (alpha * n)

11

le+06 T T LA LN T T LENL IR BB | T T T rrrrj

100000

10000

1000

100

10

01 1 1 r ool 1 |\;\|||;\|,| 1 1 |‘.“||||:\|

0.0001 0.001 0.01 0.1
epsilon

Figure 2: Design rule for hardware implementation.

4 CONCLUSIONS 12

4 Conclusions

This paper has presented and analyzed a stochastic technique for counting classes of events.
The expected value and variance of the error has been presented, along with expressions
that may be used to find the optimal number of hash functions given the desired error rate
and (in the case of hardware) memory and circuitry costs.

This technique may be used for signal processing, process monitoring and control, and
computer communications network monitoring and control. In particular, when imple-
mented in hardware, it allows sophisticated congestion-avoidance algorithms to be applied
to gigabit-per-second computer networks.

REFERENCES 13

References

[1]
2]

3]

[11]
[12]

[13]

[14]

Leonard Kleinrock. Queueing Systems vIl. John Wiley and Sons, 1976.

J.B. Postel. Transmission Control Protocol. Technical Report RFC793, Network In-
formation Center, SRI International, September 1981.

Van Jacobson. Congestion avoidance and control. In SIGCOMM 88, pages 314-329,
August 1988.

Raj Jain and K.K. Ramakrishnan. Congestion avoidance in computer networks with
a connectionless network layer. Technical Report DEC-TR-506, Digital Equipment
Corporation, Maynard, Massachusetts, August 1987.

J. Zavgren. Congestion control in the DDN with applications to SURAN. In SURAN
Working Group Meeting, Menlo Park, California, February 1988.

H. Hayden. Voice flow control in integrated packet networks. Technical Report LIDS-
TH-1152, MIT Laboratory for Information and Decision Systems, 1981.

D. Bertsekas and R. Gallager. Data Networks. Prentice-Hall, Inc., 1987.

Paul E. McKenney. Congestion avoidance and control. Technical Report SRNTNG61,
SRI International, In preparation.

Donald Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

L. Carter, R.W. Floyd, J. Gill, G. Markowsky, and M.N. Wegman. Exact and ap-
proximate membership testers. In Proceedings of the 10th Annual ACM Symposium on
Theory of Computing, pages 59-65, May 1978.

Robert Sedgewick. Algorithms. Addison-Wesley, 1984.

A.C. Bajpai, I.M. Calus, and J.A. Fairley. Statistical Methods for Engineers and Sci-
entists. John Wiley, 1978.

W. Feller. An Introduction to Probability Theory and its Applications. John Wiley,
1958.

R.W. Floyd. Large-table-size approximations for set membership algorithms. Private
Correspondence, November 1988.

A SOFTWARE IMPLEMENTATION 14

A Software Implementation

A.1 Test if Session Already Counted

curseqno) &&
curseqno) &&
curseqno) &&
curseqno) &&
curseqgno))

if ((seqvec[hashl(sessionID, curseqno)]
(seqvec[hash2(sessionID, curseqno)] =
(seqvec [hash3(sessionID, curseqno)]
(seqvec[hash4(sessionID, curseqno)]
(seqvec [hash5(sessionID, curseqno)]
newsession = FALSE;

else

{

newsession = TRUE;

seqvec [hashl (sessionID, curseqno)] = curseqno;
seqvec [hash2(sessionID, curseqno)] = curseqno;
seqvec [hash3(sessionID, curseqno)] = curseqno;
seqvec [hash4 (sessionID, curseqno)] = curseqno;
seqvec [hashb(sessionID, curseqno)] = curseqno;

}

A.2 Incremental Zeroing of Vector

/* Increment sequence number with wrap-around. */

if (++curseqno > 32767)
curseqgno = 0;

/* Invalidate one of the entries —- this guarantees that the */
/* entire seqvec will be scrubbed before the current sequence */
/* number is reused. */

seqvec[rovingptr] = 65535;
if (++rovingptr >= SEQVEC_LEN)
rovingptr = 0;

B DERIVATIONS 15

B Derivations

B.1 Derivation of Moments

This section derives moments of the recurrence equation:

k T—-k+1
Pnk = fpnfl,k + Tpnfl,kfl (14)

for fixed n using moment generating functions.

B.1.1 Moment Generating Function Definition

Moment generating functions are defined as follows:

Gn(t) = an,kekt- (15)
k
Taking the first two derivatives:
G(t) = kpnet! (16)
k
G’,’L(t) = Zk2pn,kekt. a7
k

The value Gslm) (0) is the m*™ moment of p,, thus, the mean of p,, is G’n(O) and the variance

of P is G (0) — (G (0))".

B.1.2 Derivation of Moment Difference Equations

Multiplying both sides of Equation 14 by T'e** and summing over k:

T pupe™ = kpn 14 =D kpn 11"+ (T +1)D pp 116" (18)
k k k k
The left-hand side of this equation is equal to G, (t) and the first term of the right-hand
side is equal to G, ().
The second and third terms of the right-hand side may be re-indexed, substituting &£+ 1
for k, yielding (after rearrangment):

TGn(t) = (1 —)G, 1 (t) + Te'Gp_1(2). (19)

Differentiating twice:

1"

TG, (t) = (1—)G, 1(t) + (T — 1)e'Gy_ (t) + Te'Groi (t) (20)

1 1

TC,(t) = (1 -)Gy (t) + (T — 2! Gl_y (1) + (2T — 1)e' Gy (1) + Te'Cuor (). (21)

B DERIVATIONS 16

B.1.3 Derivation of the First Moment

The first moment (or mean) may be found by substituting ¢ = 0 into Equation 20:
TG, (0) = (T —1)G,,_,(0) +T.

The solution of this difference equation is

G,(0)=T (1 - (1 - %)n) = u. (22)

B.1.4 Derivation of the Second Moment

The second moment may be found by substituting ¢ = 0 into Equation 21:

1

TG, (0) = (T —2)G, 1(0)+ (2T — 1)G,,_,(0) +T. (23)

Substituting equation 22,

G, (0) = (1 - %) G, (0) +2T + (2T — 1) (1 - %)n_l. (24)
The solution is
G, (0) =T?+ (T? - T) (1— %)n—(2T2—T)<1— %)n (25)

B.1.5 Derivation of Variance

The variance of the distribution is the second moment minus the square of the first moment:
Vo = G,(0) = (G (0)) .-

Substituting Equations 22 and 25 and simplifying gives the desired result:
2\ " 1\") 1 2n
= - - = - =1 - - = . 2
Vo=T(T-1) (1 T) +T (1 T) T <1 T) (26)

B.2 Variance for Multiple Hash Functions

The variance of the error for m hash functions can be obtained in terms of the first two
moments for a single hash function using the identity

B(I, (2:)?) — (B(IL,:)° = (B(29))" — (Blz:)™, (27)

B DERIVATIONS 17

where the z; are m independent random variables taken with replacement from distributions
with identical means and variances.
Substituting Equations 22 and 25 and dividing by T2 to obtain error probability yields

daon= (10 D (12 2) CE (Y (1Y)

