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Abstract1 
 
Over the past several decades, much research has been done in the area of modeling, 
simulating, and measuring the performance of locking primitives under conditions of low 
and high contention and with attention to memory locality of the locking data structures. 
Most of the existing locking primitives are not fair with respect to lock grants and can 
cause lock starvation among CPUs during high contention. Locking primitives proposed 
to eliminate lock starvation employ complex schemes to achieve fairness, resulting in 
poor performance under low contention. In this paper, we propose a new locking scheme, 
called fairlocks, which, on many architectures, is as fast as test-and-set locks during low 
contention, and maintains both fairness and data locality for lock grants. 
 
Keywords: locking synchronization performance, lock starvation 
 
1.  Introduction 
 
In order for parallel shared-memory multiprocessors to scale well, low lock contention 
levels must be maintained. However, existing code that experiences high lock contention 
must often be used as is until a redesigned version of the code becomes available. In 
addition, it may not be worthwhile to optimize code that executes infrequently (for 
example, handlers for rare error conditions). Primitives that increase data locality, while 
providing some fairness guarantees, can improve the performance of such code while 
simultaneously preventing unfairness and lock starvation. Moreover, the increase in 
instruction execution rate outstrips the reductions in global latencies among large-scale 
multiprocessors, as shown in Figure 1. The figure shows that memory accesses were less 
expensive than instructions in the early 80s; however, the Moore’s-law-driven increases 
in CPU core performance have outstripped those of memory, so that now literally 
hundreds of instructions can execute in the time required to complete a single memory 
access. This motivates the need for locking primitives that preserve memory locality or 
for some solution from the underlying processor architecture. Thus, some new 
architectures provide a solution to this problem by providing closely bound groups of 
CPUs, called “nodes,” with lower latencies within nodes than between nodes. Examples 
of such architectures include cache-coherent non-uniform memory-access (CC-NUMA) 
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architectures [DASH, FLASH, NUMA-Q], shared-cache architectures [CMP, NUMA-Q], 
and systems with hierarchical system busses. 
 

 
                                                           Figure 1: Memory Latency Trend 

In these architectures, the memory latency for CPUs within a node, intra-node latency, is 
much lower than memory latency for access across nodes, inter-node latency. These 
architectures can cause lock starvation during high lock contention periods, as the CPUs 
on the same node as the one releasing the lock have an unfair advantage over the other 
CPUs (due to their ability to access the memory faster). Hence, locks are always kept 
within a node and starve CPUs on the other nodes. To prevent this starvation, the locking 
primitives should maintain some kind of fairness among CPUs. In this paper, we analyze 
the existing locking schemes and evaluate their performance based on aspects of 
complexity and fairness. Later, we propose a new locking which, with little complexity, 
eliminates the problem of lock starvation in the high contention case and minimally 
impacts performance in the low contention case. 
 
The remainder of this paper is organized as follows: Section 2 discusses the existing 
solutions and evaluates them based on aspects of their complexity and fairness. Section 3 
describes our proposed locking scheme, fairlocks. Section 4 states the system conditions 
and assumptions made in the paper. Section 5 contains the pseudocode for the proposed 
locking scheme. Section 6 presents the performance results of the locking scheme in 
comparison with the existing locking schemes. Section 7 concludes the paper.  
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2. Existing Solutions 
 
This section outlines several representative locking primitives that have been produced 
over the past few decades and studies their performance with respect to throughput and 
fairness. 
 
Simple test-and-set spinlocks have been used for decades and are often the primitive of 
choice for low contention regions because of their extremely short code-path lengths.  
However, they perform poorly under high contention because of lock starvation caused 
by the disparity in memory latency for intra-node and inter-node access. In CC-NUMA 
systems, simple spinlock can also experience unfairness and even starvation—the CPUs 
on the same node as the CPU releasing the lock have an unfair advantage in acquiring the 
lock.  In one case in our study, the CPUs on one node were granted the lock over 2000 
times more frequently than the CPUs on another node, where both nodes were running 
identical workloads (as shown in Section 6).  This poor performance and unfair access 
has motivated researchers to propose a large number of alternative locking primitives. 
 
Ticket locks [ticket, olock], queued locks [ticket, olock] and adaptive queued locks [beng-
hong lim] solve the unfairness problem and avoid the excessive memory contention 
problem that simple spinlock faces at high contention [MCS].  However, queued locks 
implement a blind first-come-first-served discipline.  This implementation results in 
lower levels of performance on CC-NUMA systems than do simple spinlocks with 
respect to the average throughput, because of its complex scheme of maintaining queues 
for locking.   
 
Reader-writer spinlocks [rw-spin] allow reading processes to proceed concurrently, 
without lock contention or memory contention.  Specially constructed implementations 
[Hsieh & Weihl] are also free of memory contention.  However, not all algorithms can be 
designed to use primarily read-side locking. For write-intensive workloads, reader-writer 
spinlocks perform even worse than simple spinlock [pdcs’99]. Read-copy update 
[pdcs’98], like reader-writer spinlocks, allows reading processes to proceed concurrently, 
with neither memory contention nor lock contention.  But again, not all algorithms can be 
designed to use read-copy update.  
 
J-Lock [jlock] provides an effective solution for the problem of lock starvation by using a 
global bitmask and per-CPU spin pointers. Although this solution provides fairness, it is a 
complex scheme and requires disabling interrupts on each acquisition and release in order 
to avoid race conditions. The added overhead imposed by disabling interrupts makes 
jlock uncompetitive at low levels of contention.  
 
The algorithms discussed above either do not provide fairness at high lock contentions at 
all or provide fairness among CPUs with complicated schemes, making them expensive 
to use under low lock contention periods. In contrast, the algorithm described in this 
paper is simple and, on many architectures, performs as well as test-and-set-bit locks at 
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low contention levels while providing fairness among CPUs at high contention levels. 
Thus, the algorithm performs well under low lock contention and high lock contention 
periods and maintains absolute fairness under both cases. 
 
3.  Fairlocks Overview 
 
The fairlocks algorithm performs as well as test-and-set-bit locks during low contention 
and provides fairness among CPUs during high contention. The algorithm uses a simple 
one-word per-lock bitmask. The bitmask is divided, as shown in Figure 2. The rightmost 
bit is called the LOCK_BIT, which indicates whether a CPU is holding the lock. The 
other bits in the bitmask correspond to the spin bit of the CPUs and mean that the CPUs 
want the lock and are spinning on their respective bit. 
 
 

                                     …….. 

LOCK_BIT: 
 
0 – Lock is free and not 
held by any CPU 
1 – Lock is being held by 
some CPU 

CPU 0 Spin Bit: 
0 indicates CPU 0 
doesn’t want the lock, 
1 indicates it wants it 
and is spinning on the 
bit 

CPU 30 Spin Bit: 
0 indicates CPU 30 
doesn’t want the lock, 
1 indicates it wants it 
and is spinning on the 
bit 

 
Figure 2: Fairlock Structure 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 

 
Figure 3: Example of the Fairlock Bitmask 

An example of a typical/possible bitmask is shown in Figure 3. The figure shows that the 
LOCK_BIT is being set, indicating that the lock is being held by one of the CPUs (other 
than those whose CPU spin bits are being set). The figure further shows that the CPU 
spin bits (with bits numbered from 0 to 31 from left to right) 1, 4, and 8 are set, indicating 
that CPUs 0, 3 and 7 require the lock is spinning for them. The locking scheme works as 
follows: 
 
A CPU acquiring a lock checks the LOCK_BIT to see if it is set. If it is not set (if it is 
equal to 0), then it sets the LOCK_BIT and holds the lock. Otherwise, it sets its 
corresponding spin bit and spins on the particular bit, waiting for the bit to be changed to 
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0. If the bit becomes 0, then the CPU holds the lock. In the example in Figure 3, CPUs 0, 
3 and 7 have their spin bits set and spin on their respective bit, waiting for it to be 
changed to 0.  
 
A CPU releasing a lock checks to see if some other CPU wants the lock (by checking the 
spin bits), and if no bits are set, clears the LOCK_BIT in order to fully release the lock. If 
even one of the CPU spin bits are set, then it finds the next CPU to whom the lock must 
be handed off, in a round-robin fashion (starting from its spin bit), and clears the bit 
corresponding to the selected CPU. For example, in a scenario like Figure 3, if CPU 2 is 
releasing the lock, it finds that there are CPUs spinning for the lock.  It therefore selects 
the next CPU that wants the lock, scanning from its bit position in a round-robin fashion, 
which is CPU 3.  CPU 2 would therefore clear CPU 3’s bit (bit 4), thus handing the lock 
off to CPU 3. 
 
The primary advantage of our proposed locking scheme is its good performance during 
both low and high lock contention phases. During low contention phases, the locks 
perform nearly as well as test-and-set bit locks, as the fast path (the path used under low 
contention) of fairlocks is extremely simple and involves only testing and setting of 
LOCK_BIT. During high lock contention phases, it eliminates lock starvation among 
CPUs, and the overhead introduced in the slow path (the path executed during high 
contentions) for maintaining this fairness is less. Thus, the proposed fairlocks can 
maintain high system performance under all contention levels.  
 
4. Conditions and Assumptions 
 
The locking algorithm presented in this paper is designed for the following conditions: 
 
1. The system provides a shared-memory model. 
2. Performance is critical at low levels of contention, since well designed algorithms and 

systems maintain low lock contention. 
3. Fairness is critical at high levels of contention, because starvation of a portion of the 

system often has the same effect as a system hang or crash. 
4. CPUs have equal priority with respect to the lock.  Although the algorithms presented 

could easily be adapted to consider priorities, these more complex schemes are 
outside the scope of this paper. 

5. The algorithms must support conditional-acquisition primitives, which either 
immediately acquire the lock, or immediately return a failure indication. 

 
5. Fairlocks Details 
 
This section discusses the implementation details of the fairlocks algorithm. We present 
the pseudocode for the scheme.  We have eliminated issues such as debug assist code, 
compiler optimizations, and cache alignment padding for brevity. 
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Primitives Required 
 
The pseudocode for the algorithm makes use of the following primitives: 
 
• cmpxchg(ptr,old,new):  atomically compares the value pointed to by “ptr” with 

“old” and if the two values are identical, stores “new” through “ptr” and returns old if 
successful. 

• clear_bit (bitnum,ptr): atomically clears the “bitnum” bit in the value pointed by 
“ptr.” 

• test_and_set_bit(bitnum, ptr): atomically sets the “bitnum” bit in the value pointed 
by “ptr” and returns the old bit value. 

 
Data Structures 
 
Fairlocks use a single word bitmask, which allows it to be competitive with test-and-set-
bit locks at low contention levels and to maintain high efficiency and fairness at high 
contention levels. 
 
Pseudocode 
 
numa_trylock(lock): (Conditional acquisition of a lock) 

Figure 4: Pseudocode for Conditional Locking 
In numa_trylock, the algorithm does a test_and_set_bit and checks to see whether the 
LOCK_BIT (see Figure 2) was set. If it was not set, then the lock has been acquired and 
it returns TRUE; otherwise some other CPU already holds the lock and it returns false. 
 
numa_lock(lock): 
 
The unconditional acquisition of the lock is as follows: 
 

 
 

Figure 5: Pseudocode for Unconditional Locking 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 reacquire: 
 if(test_and_set_bit(LOCK_BIT, &lock)) { 
  mymask = 1U<<(smp_processor_id()+1); 
  mylock = lock; 
  if(mylock&1) goto reacquire; 
  actual = cmpxchg(&lock, mylock, mylock|mymask); 
  if(actual != mylock) goto reacquire; 
   while(lock & mymask) {/*spin*/}  
 } 

1 
 

 return(!test_and_set_bit(LOCK_BIT, lock));
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In the unconditional locking routine described in Figure 5, line 2 does a check on the 
LOCK_BIT and sets it. If LOCK_BIT was not set previously, then it has the lock and 
returns. Otherwise, it sets its spin bit (line 3 and 6) and spins on it (line 8). Lines 5 and 7 
are present to eliminate race conditions. 
 
numa_unlock(lock): 
 
The unconditional release of the lock is as follows: 

                  Figure 6: Pseudocode for Unlocking 

In the unlock routine pseudocode described in Figure 6, line 1 checks to see if any spin-
bits are set; if not it clears the LOCK_BIT and returns. If some spin bits are set, it finds 
the next CPU to give the lock (lines 3-7) and clears the selected spin bit (in line 8). 
 
6. Performance Analysis 
 
In this section, we evaluate the performance of fairlocks in comparison with spinlocks 
inside the Linux® kernel with respect to the following metrics: fairness, lock overhead, 
and overall system performance impact. Note that currently fairlocks is implemented in C 
to simplify portability between many architectures supported by Linux, whereas 
spinlocks are implemented in optimized assembly for each architecture. Future 
optimizations to fairlocks will have assembly language optimizations to further improve 
performance. 
 
6.1 Lock Overhead: Fairness 
 
We created a user-space test application to consider lock overhead, where a single thread 
acquires and releases a spinlock, then a fairlock, a specified number of times. We 
measured the amount of time it took to acquire and release each type of lock and 
compared the two locking mechanisms. We used this test to measure the overhead of 
fairlocks compared to that of spinlocks. We further modified the test to measure the 
number of times the lock was acquired by each thread. This allowed us to see exactly 
how the memory latency between nodes affected lock throughput on each quad.  
Additionally, we changed the code to flexibly pin threads to CPUs. The result of running 
four threads (for 10 seconds), with two on each quad, is shown in Table 1. 
 

1 
2 
3 
4 
5 
6 
7 
8 
9 

 if(cmpxchg(&lock, 1U, 0U) != 1U) 
 { 
  mask = (1U<<(smp_processor_id+2))-1; 
  cpus = lock & ~mask & LOCK_BIT_MASK; 
  if(!cpus) 
   cpus = lock & mask & LOCK_BIT_MASK; 
  nextcpu =ffs(cpus) –1; 
  clear_bit(nextcpu,lock); 
 } 
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Thread # Spinlock – Acquisitions Fairlocks – Acquisitions 
Thread 0 (Quad 0) 780297 310915 
Thread 1 (Quad 0) 801152 316622 
Thread 2 (Quad 1) 26213 238295 
Thread 3 (Quad 1) 26558 234268 
 
       Table 1: Number of Lock Acquisitions for 4 Threads  
 
Table 1 shows that spinlocks favor Quad 0 30 times over Quad 1, illustrating a fairly bad 
case of lock starvation. However, fairlocks distributes the locks much more fairly, as 
shown in Table 2. Further, the problem persists with an increase in contention and the 
result of running eight threads, with four on each quad, running for 10 seconds, also 
shown Table 2. 
 
Quad # Spinlock Acquisitions Fairlock Acquisitions 
Quad 0 threads 1293874 539797 
Quad 1 threads 312856 539696 
 
                         Table 2: Number of Lock Acquisitions for 8 Threads  
 
Spinlock starvation can be observed again in Table 2, whereas the fairlocks are extremely 
fair in the same scenario. Spinlock starvation observed in this case is lower than the 
previous case, but could be due to the fact that the 8 threads use all the CPUs in the 
machine, causing a thread to be frequently scheduled out to allow other system processes 
to run. 
 
6.2 Lock Overhead: Throughput 
 
The above test was also used to measure the overhead of both the locks.  The results of 
these measurement are shown in Table 3.  
 
 
 # of lock/unlock calls Time taken (in micro-seconds) 

Spinlocks 100000000 2937928 
Fairlocks 100000000 5910851 
 

                         Table 3: Throughput of Locks   
 

Table 3 shows that fairlocks have about twice the overhead of spinlocks in the no-
contention case. Again, it must be noted that the throughput results measured are for 
assembly optimized spinlock code, and the fairlock code is written in C. 
 
We created another user space test to measure the lock throughput of both the 
implementations under different levels of contention. Additionally, we studied the lock 
acquisition frequency of different CPUs to study the effects of lock starvation, if any. We 
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implemented the tests by creating a master process that spawned off a specified number 
of threads, pinning the nth thread to the nth processor in the system. After all the threads 
were created and ready, the controlling thread signaled them to start and went to sleep for 
a specified amount of time. While the master thread slept, the children threads entered a 
loop where they all tried to grab and release a common lock, incrementing an internal 
counter each time. After the master thread woke up, it signaled the children to stop, then 
summed up the total number of locks acquired and printed the results.  
 
Figure 7 shows the results we obtained running the test on a 2-quad, 8-way IBM® 
NUMA-Q® system. The figure shows that fairlocks performs reasonably well when 
compared with spinlocks, especially at higher contention when the increased memory 
latency of the second quad begins to show up (threads 5-8). Further, Figure 8 shows the 
fairlocks/spinlocks performance ratio measured under different levels of contention. 
Figure 8 shows that, on average, fairlocks has 64% of spinlock throughput. 

Userspace Lock Performance (2-8 Threads)
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     Figure 7: UserLock Performance 
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Figure 8: Fairlocks/Spinlocks Performance Ratio 
 
6.3 System Performance: 
 
In order to measure the real world impact of fairlocks with respect to throughput and 
fairness, we made the runqueue_lock spinlock in the Linux 2.4.12 kernel use fairlocks. 
Then, we used the Reflex benchmark to compare the performance of fairlocks with 
spinlocks in a live Linux kernel. Reflex is a micro-benchmark designed to exercise the 
schedule() and reschedule() functions in a controlled manner. The program creates a 
number of threads, which are grouped into active sets. All threads in one active set pass a 
token around using blocking reads and writes on message pipes. After receiving the 
token, the program performs several rounds of computation before passing the token to 
its neighbor in the active set and blocks on a read for the same token. The explicit yield 
invokes schedule(), whereas the blocking yield invokes the reschedule() idle function. 
Further, as the number of active threads increases, so does the contention for the global 
runqueue_lock. For the simulation, we used zero computation rounds, as these rounds 
precisely measure the overhead of scheduler and the contention details over the 
runqueue_lock of the scheduler. We did the performance evaluation by running Reflex on 
a two quad, 8-way IA32 IBM NUMA-Q system and the locks (spinlock, fairlocks) were 
tested for its throughput and fairness (using a lock instrumentation tool called Lockmeter 
[lockmeter]). The throughput and fairness results of Reflex are as follows: 
 
Reflex – Fairness: 
 
In this test, we observed the fairness of both the locks (such as lock mean wait time, 
maximum waiting time, contention, spin time, etc.) while running the Reflex benchmark. 

Fairlocks/Spinlocks performance ratio
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This test also provides insight into how lock usage is affected by fairlocks. We monitored 
the spinlock contention details, such as maximum waiting time, average utilization and 
number of lock acquisitions, using lockmeter [Lockmeter] during the re-run of Reflex 
benchmarks. We made minor modifications to the lockmeter for it to work with fairlocks 
to measure the same parameters. We ran the Reflex benchmark with the lockmeter-
instrumented kernels. Table 4 shows the lock usage information for the running of the 
Reflex benchmark with a lockmeter-instrumented kernel. 

 
     Table 4: runqueue_lock Usage for Spinlocks and Fairlocks 
   
Table 4 shows that for the allotted time of the benchmark, the lock was acquired equally 
for both the locks. However, the maximum wait time of spinlock was two thousand times  
larger than that of fairlocks. Thus, it is evident that spinlocks causes lock starvation 
among CPUs in a real world scenario, as maximum wait time is much larger than the 
maximum hold time.  The starvation is eliminated by fairlocks, where the maximum wait 
time of a CPU on the lock was a little more than three times the maximum hold time. 
This is a very clear illustration of how fairlocks is able to avoid starvation with very little 
overhead.  
 
Reflex – Throughput: 
 
Figure 9 summarizes the performance of both the locks with respect to throughput. The 
figure shows that the results when fairlocks is used are statistically equivalent, if not 
occasionally better, than those with spinlocks. Though fairlocks has more overhead than 
spinlocks, the comparable performance can be due to the starvation caused by the 
memory latency between quads, which can hamper the performance of spinlocks.  
 
 
7. Conclusion 
 
In this paper, we studied the problem of lock starvation among CPUs in some 
architectures with variable memory latencies. We also studied the currently available 
locking schemes, observed their shortcomings, and proposed a new locking scheme, 
fairlocks, which eliminates lock starvation among CPUs with minimal overhead under 
low contention. The fairness of the algorithm is substantiated both theoretically and 
through our experimental studies. Thus, in cases where reducing lock contention is 
impractical, our proposed locking scheme can be used as a locking solution because it 
eliminates lock starvation and performs better than the currently available fair locking 
schemes. 

Utilization ContentionMean HoldMax Hold Mean Wait Max Wait Total Nowait Spin Reject
spinlocks 31.70% 64.70% 66 2720 372 9287000 3206567 35.30% 64.70% 0%
fairlocks 27.40% 54.60% 66 1289 261 4515 2773485 45.40% 54.60% 0%
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 Figure 9: Lock Performance Measured with Reflex 
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