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Abstract

With the advent of multi-core chips and simultaneous nuliading technologies, high degrees of
parallelism will soon become the norm for both small- andéascale systems. Operating systems
for such highly parallel environments require efficientdymonization. Unfortunately, the ever-
increasing overhead of synchronization instructions omeno CPUs has made such efficiency
difficult to achieve.

This paper evaluates the performance of synchronizatiategfies on modern CPU archi-
tectures. We show that synchronization instructions caa ts@usand times more expensive than
normal instructions and that formerly scalable synchratidn strategies now perform very poorly.
We then evaluate several state-of-the-art solutions thatbine copy-based update and deferred
reclamation to allow lock-free concurrent reading. Thedat®ns exhibit different update man-
agement and reclamation strategies, each of which perfaretis but offers a unique trade-off
between performance, memory consumption, and complekieypresent an experimental eval-
uation of these strategies, focusing primarily on the nemdtly scenarios common in operating-
system kernels, and discuss the impact of potential futu@a@ges in CPU architecture.

Keywords: process management, concurrency, multiprocessing, irextciaision, synchroniza-
tion.
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1 Introduction

The quest for ever-higher processing throughput has lettteasingly parallel architectures. Cur-
rent hardware trends include “simultaneous multi-thregtion a single processor, as well as mul-
tiple processors on a single “multi-core” chip. When conelinvith ongoing advances in shared
memory multiprocessor design, these trends will lead tbitactures with very high degrees of
parallelism. While these architectures promise to meeptréormance demands of enterprise
applications and data centers, a substantial obstaclaliaing their performance potential is the
limited scalability of today’s operating systems. The euntrexcitement about virtualization as a
means of running several operating system instances sinedusly on a single hardware platform
is, at least in part, a symptom of this problem [6]. Our ultienaterest is solving this problem
of scalability of synchronization for operating-systenrieds, particularly for the read-mostly
scenarios that are quite common in kernels.

While some commercial operating systems, such a$$SRIX ®, Sun Solaris, Sequent (now
IBM®) DYNIX/ptx®, and IBM AIX®, have scaled to execute on many tens or even hundreds
of CPUs by using aggressive data partitioning, fine-graagkileg, and function shipping, this
scalability has come at the cost of increased complexity dewdeased performance. Systems
based on virtualization face these same problems in thertigpe and do not completely remove
them from the guest operating system, which must still seadk if it must run on large scale
virtual machines.

Central to the scalability vs. performance vs. complexiade-off are the synchronization
strategies used to maintain the consistency of operatisigisydata structures. Synchronization
limits performance and scalability not only due to contemfior critical sections, but also due to
the overhead it imposes on processor throughput in coptefitte scenarios. This overhead takes
the form of synchronization instruction complexity, anggline stalls due to memory and inter-
processor communication latency. These overheads aremtcine-dependent, and although they
used to be unimportant, developments in processor arthitebave made them progressively
more problematic. The result is that synchronization stjias designed with these overheads in
mind perform and scale dramatically better than those gmatrie them. Not surprisingly, synchro-
nization strategies in production operating systems haokved significantly over recent years in
response to these pressures [7, 37].

Today’s production systems use a bewildering assortmesyméhronization strategies that
make different trade-offs between performance, scatgbdind complexity. Often these trade-
offs are highly dependent on assumptions about processuitesture characteristics, such as the
memory latency, memory consistency semantics, and théahildy and relative cost of spe-
cific synchronization instructions. Performance also setaldepend critically on the relative
mix of reads and writes in the workload, with the read-mostge being especially important
in operating-system kernels. These read-mostly sceniagsgle: (1) routing tables, (2) the sys-
tem’s hardware configuration, for example, removable USBads, (3) dynamically loaded ker-
nel modules, (4) security policies such as firewall confiaraaccess-control lists, and intrusion-
detection monitoring rules, (5) filesystem layout such adinectory hierarchy tracked by Linux’s
directory-entry cache, (6) disk-partition and softwar&HB mappings, and (7) software resources
such as System V IPC, open-file tables, and active netwotk parmany cases, the corresponding
read-mostly data structures are accessed quite frequEntlgxample, routing tables must be ac-
cessed on each network packet transmission, firewall caatign and intrustion-detection rules
on every packet reception, and disk-RAID mappings and digetables on each disk 1/0. Perfor-
mance in these read-mostly scenarios is therefore chticaportant, and this paper consequently
focuses mainly on performance in read-mostly situations.

Two of the most scalable synchronization strategies addpteread-mostly use are Hazard
Pointers [42] and Read Copy Update (RCU) [38]. Both of thesstegies improve read-side
performance and scalability by forcing updaters to creatd modify new versions of objects
instead of updating the old versions in place. The major aidwge of this approach is that it
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leads to near-optimal performance in the read path sinatereghave no need to synchronize
with writers, nor other readers, and hence there is no needtémnic instructions or memory
barriers in the read path. There are two main disadvantagesver. The first is that the memory
associated with old versions must be reclaimed. The secomithi readers must tolerate the
possibility of reading stale data. Fortunately, there aeegl known strategies for deferring
memory reclamation and performing it efficiently in batchesd there are many situations in
which readers can tolerate stale data. For example, thenmaire than 400 uses of RCU-related
primitives in the Linu® 2.6.12 kernel. Hence, deferred-reclamation strategies Wédespread
practical application.

RCU and Hazard Pointers differ in their strategies for mgnmeclamation and synchroniza-
tion among updaters. RCU typically uses a lock-based upstettegy and quiescent-state-based
reclamation, whereas Hazard Pointers are typically usé¢d man-blocking synchronization and
explicit (hazard pointer-based) reclamation. It is worttimg, however, that update strategy and
reclamation strategy are orthogonal choices. We will epgptbis orthogonality and the perfor-
mance implications of different choices later in this paper

First, Section 2 presents an overview of synchronizatioatesgies that have been used in
operating systems. Then Section 3 quantifies the instrdtieel overhead of synchronization
primitives on modern CPUs, and evaluates the effect it hdsomathe performance of some of
these strategies. The best performing strategies, basedmnbased update with concurrent
lock-free reading and deferred reclamation, are examineddre detail in Section 4. Section 5
discusses the impact of future architectural trends, actide6 concludes the paper.

2 Background

Early synchronization strategies, based on coarse graoaallocking, limit scalability due to lock
contention. A variety of strategies have been proposedtiacelock contention, including queued
locks [1, 57], fine-granularity locking, data locking [4,,113, 27, 33, 51], partitioning [6, 14, 49,
54, 55], data ownership [34], asymmetric reader-writeking [9, 39], and numerous flavors of
non-blocking synchronization [11, 19, 20, 21, 22, 23, 40,421 52, 56]. Fine-granularity locking
reduces contention by splitting large critical sectiorte imultiple small ones. However, as critical
section size reduces, the overhead of synchronization amésins becomes progressively more
important. Spinlocks are one way of protecting small caitisections, but they require careful
design to avoid introducing memory contention [34]. Quelosls reduce memory contention
by allowing each competing thread to spin on a separate mx#tibn. Even with low-overhead
spinlocks, frequently executed critical sections limalsdility.

2.1 DataLlocking

Data locking improves scalability by carefully partitiogi data structures and associating distinct
locks with each partition. If data is partitioned such tretlepartition is accessed by a single CPU,
significant performance gains can be achieved by avoidiagnéed to shuttle locks among CPU
caches. However, in cases where partitioning is mediatedMirgual machine, care must be taken
to avoid preempting a given operating system while it is mgé lock [53]. Per-CPU reader-writer
locking [2, 26] is an asymmetric approach that achieves dasieffect by assigning a distinct lock
to each CPU and requiring reading code to acquire its own G&tkksand writing code to acquire
all CPU's locks. This strategy is particularly effective fead-mostly scenarios, which tend to be
common in operating systems, because it only incurs menatenty and contention for writers.
This technique is used in the Linux 2.4 kernel, under the ndmeck” (“big-reader lock™).

2.2 Non-Blocking Synchronization

In parallel with the evolution of scalable locking stratg)i there has been extensive work on
non-blocking synchronization (NBS). NBS strategies aahigynchronization by optimistically
computing new updates and using atomic instructions, sscboampare-and-swap (CAS) and
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load-locked/store-conditional (LL/SC), to atomicallyptace old values with new, updated val-
ues. In the face of conflicts, updates must be retried, aq@Ehelechanisms are required to ensure
progress and maintain adequate performance. These msofsansually take the form of com-
plex, application-specific algorithms, and may includetstgies such as randomized exponential
back-off [20].

Herlihy et al. define various forms of NBS, including waiédr, lock-free and obstruction-free
synchronization [22]. A synchronization strategy is wiadte if it ensures that every thread will
continue to make progress in the face of arbitrary delaystuérahreads, lock-free if it ensures
that some thread always makes progress, and obstructeriffit ensures the progress of any
thread that eventually executes in isolation. The prospgbeing free from problems such as
deadlock, thread starvation, scheduling convoys, andityrimversion has lured researchers to
use NBS strategies in operating system kernels, such afeyiatf46], the Cache Kernel [8],
Exokernel [10], and K42 [34].

The specialized stack and queue implementations of then8gistkernel were an early use of
NBS strategies in operating systems [31, 32]. Some of théh®gis implementations used only
load and store instructions, but depended on sequenti@ligistent memory, while others required
an atomic CAS or double compare-and-swap (DCAS) instroctioater, Bershad showed how
CAS could be simulated on architectures that did not sugpditectly [5], but with significant
performance penalties due to its reliance on locking.

Greenwald and Cheriton proposed a more systematic strigegyplementing non-blocking
data structures based on the use of an atomic DCAS instruftis]. By associating version
numbers with each data structure and using DCAS to atompicalinpare and update the data
structure and its version number, they were able to detett@hback from concurrent updates to
complex data structures. Unfortunately, a DCAS instructtorarely available in the instruction
sets of modern CPUs. Software implementations of multipiagare-and-swap (MCAS) have
been proposed, but are still a topic for research [11], azntimplementations are expensive and
perform poorly under high contention.

Herlihy proposed a methodology for creating lock-free armdt¥ree implementations of con-
current objects using LL/SC [20]. He also proposed a sinalgproach based on CAS, but it
resulted in increased complexity and worse performanck [2Bile many NBS algorithms have
been developed, experience has shown that building paatRS algorithms directly from avail-
able primitives is a complex task. For this reason, theraiisenitly much interest in higher-level
abstractions for simplifying the task.

Transactional memory, implemented either in software P3),50], or hardware [16, 24, 30,
48], allows operations to be grouped into transactions whiomically succeed or fail. Fraser [11]
and Herlihy et. al. [23] showed that transactional memorkesanon-blocking algorithm design
relatively simple. However, software transactional meyuas very high overhead [11], partially
due to the use of deep copies in current designs. Hardwassitiions are currently limited in size
by the size of the cache and the write buffer, and require fizations which hardware designers
are reluctant to make on untested features. Whether or ndvhze transactional memory will be
ubiquitous in future processors in still unknown.

NBS updates to complex data structures typically invoheating new versions of elements,
updating the new version in place, and then atomically @ptppointers to the old version with
pointers to the new one. Therefore, the problem of how, orenspecifically, when, to reclaim
the memory of the old versions must be addressed. The prdblémt updates may occur con-
currently with readers traversing the same data structorthis case, readers can be left holding
references to old versions. If the memory associated wiketversions is reclaimed while the
references are still in use, traversing the data structu direct readers into the free pool, or
elsewhere if the memory has already been reused. To avoabsixpreaders to this “hijacking”
danger, additional mechanisms are required.

One approach is to place the burden of checking for updaté®lgrupon the reader. The
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problem with this approach is the performance impact on ¢lagl path. At a minimum, readers
would either have to execute a LL/SC sequence on the pomteetdata, or two memory barriers
to check a version number associated with the data. In trenabsf performing these operations
on every read of the data, additional memory managementanésrhs are required.

2.3 Type-Stable Memory Management

An alternative approach is to never free memory. Howevés ishunacceptable for many produc-
tion systems, whose uptime requirements force reuse of meranore efficient approach is to
use type-stable memory management (TSM) [15]. TSM enshed¢sé¢aders can not be hijacked
out of the data structure they are traversing by maintaie@garate memory pools per data struc-
ture type. However, this too has proven to be unacceptablerémluction systems [42]. A better
approach is to distinguish between removal of an element fxalata structure and reclamation
(for example, freeing) of that element, and to delay theameition until it is guaranteed that no
reader continues to hold a reference to it. We use the terfierieeel reclamation” to describe this
class of memory management strategies, which are discurstieelfollowing section.

2.4 Deferred Reclamation

An obvious technique for detecting whether any readers heflefences to previously removed
data is to associate reference counts with the data. Hopntlreemanipulation of these reference
counts requires synchronization operations in the real, pettich has a substantial impact on
performance [42].

Fraser proposed an approach to deferred reclamation irhvidBS operations are associated
with epochs [11]. The idea is to delay the reclamation of dataoved in epoch until all threads
in the system with access to that data are in an epoch latesthehis behavior is accomplished by
having each thread maintain its own local epoch, and ppétieiin the maintainance of a system-
wide global epoch. On every NBS operation a thread obseheeglbbal epoch. If it is not equal
to the thread’s local epoch, the local epoch is advanceddséme value as the global epoch
and the NBS operation proceeds. On the other hand, if theabotal local epochare equal, the
thread increments a local counter; when this counter reapeedetermined threshold, the thread
attempts to update the global epoch. Each thread maintdiimlzo list” of removed elements
associated with the thread’s local epoch. These elementbeaeclaimed once the thread has
observed a global epoch greater than its own local epocheaflsrmaintain a local counter of
NBS operations associated with the current epoch and usedeétermine when to attempt to
advance the global epoch, which can only be advanced oncgthivead has observed its current
value.

Epoch-based reclamation is safe, in the sense that it neglzims memory prematurely, but
it incurs overhead for maintaining a per-thread count of Nig@rations per local epoch and a
global count of the threads that have observed the globaltepMore importantly, on weakly
ordered CPUS$,readers must incur memory-barrier overhead in order torertbat the memory
operations in a given critical region are seen by other CRUseag within that critical region. As
can be seen in Table 2, memory-barrier instructions are gxipensive.

To ensure that the global epoch can be advanced and memdsymed, both readers and
writers incur these overheads, since readers must infortaraivhen they enter and exit a critical
section, and writers must reference this information ineord determine when any removed
elements may be safely reclaimed.

Michael proposed an approach to safe memory reclamatiog bsizard pointers [42], which
we term “hazard-pointer based reclamation” (HPBR). Whenawthread obtains a reference to a
shared data object it sets one of its hazard pointers to pmiie object. When the reference is
discarded, the hazard pointer is removed from the list. tepto reclaim an object, the hazard

1Al CPUs commonly used in SMP systems, including Intel x8MI POWER, Intel I1A64, and Sun SPARC, are
weakly ordered.
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pointer lists of all threads in the system must be searchedsore that there are no hazard pointers
for that object. The overhead of this search can be amorbgegclaiming objects in batches.
In this case, the batch size represents a trade-off betweshead and memory usage, and by
keeping track of the number of removed objects it is posshlmpose a tight bound on memory
usage. Hazard pointers are also a safe memory reclamatidegst, but they too incur overhead in
the read-path, since readers must insert and delete haziatdns using an algorithm that requires
both atomic instructions and memory barriers on most mo@eds. There is some ongoing work
that may eliminate at least some of the memory barriers,Hisiviork is in very early stages at
this writing.

2.5 Read-Copy Update

Hazard pointers and epochs can be viewed as explicit mesthapimanipulated by readers, to in-
dicate when it is safe to reclaim objects. An alternativerapph, called read-copy update (RCU),
is used in the VM/XA [18], DYNIX/ptx [38], K42 [12], and Linu%35] operating systems. RCU
inferssafe reclamation times by observing global system state.

RCU imposes the coding convention that threads are prekilfiom holding references to
shared data while in “quiescent states”. A simple exampéeafiescent state in a non-preemptive
kernel is “voluntary context switch”. Hence, threads in a#preemptive kernel observe the con-
vention of not relinquishing the CPU while holding refereado RCU-protected dafaBecause
of this convention, if a thread has been observed in a quitstate after a given object has been
removed from any linked data structures of which it was a manrthen this thread can no longer
hold a reference to that object. This same line of reasoramgbe applied system-wide, leading
to the following procedure for removing and reclaiming abge

1. remove the object

2. wait until each thread in the system has subsequentlggdalssough a quiescent state. In the
above example this would amount to waiting for every CPU angirstem to pass through a
context switch.

3. reclaim the object

This approach to reclamation is referred to as quiescemt-$tased reclamation (QSBR).

As noted above, objects can not be reclaimed until all ttedasle been observed in a quiescent
state. A time period during which all threads have been aleskEin a quiescent state is termed a
“grace period”. Hence, quiescent states are thread-loealts, whereas grace periods are global
in nature. The relationship between quiescent states @ geeriods is shown in Figure 1. Grace
periods may overlap, as do grace periods GP1 and GP2, anateag pf time containing a grace
period is itself a grace period, as is GP4.

. .
- GP2 - GP3 o
Thread 0 —@- ———@0———
Thread 1 — @ o
L GP1 3

Figure 1: RCU Quiescent States and Grace Periods

Implementations of RCU contain mechanisms for detectingattt-local quiescent states and
for determining when a grace period has elapsed. Gracedudetection mechanisms are typically
a barrier computation that takes thread-local quiescate sietection as input. Since reclamation

?Note that this convention is quite similar to the prohibitiagainst blocking while holding a spinlock.
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can be deferred for any time period containing a grace pgoiggcts can be reclaimed in arbitrar-
ily large batches to amortize the overhead of reclamation.

The above example presented voluntary context switch ageaapnt state. RCU implemen-
tations also use other events as quiescent states, ingludialuntary context switch, idle-loop
execution, return to user mode and thread termination [@jvell as explicit calls to indicate
quiescent states [3].

The discussion of RCU thus far has focused solely on syn@ation between readers and
reclaimers. Any algorithm that uses RCU must also use some &6 synchronization to coordi-
nate updaters. This mechanism could be locking or NBS or smher form of synchronization,
and in fact is an orthogonal choice to that of how to synctmemeaders and reclaimers. The
RCU strategies used in the VM/XA, DYNIX/ptx, K42 and Linuxenating systems use locking to
synchronize updaters. The K42 operating system also uselsviRifi NBS-based updaters [34].

The performance of the synchronization strategies disclssthis section depends critically
on the costs of synchronization operations. The next settierefore discusses the overhead of
some of these synchronization operations on modern CPUtectires, and the effect of this
overhead on selected synchronization strategies.

3 Synchronization on Modern CPUs

This section discusses the memaory consistency semant@amic instruction overhead of mod-
ern CPU architectures and evaluates their impact on wellwknsynchronization strategies. We
show that most synchronization strategies require memarsidss and atomic instructions that
can be over a thousand times more expensive than normaldtistrs. A simple benchmark

then shows that most well-known synchronization stratedi@ve extremely poor performance
and scalability on today’s CPUs.

3.1 Memory Consistency Semantics

When designing a synchronization strategy, it is temptmmggsume an execution environment
with sequential consistency. Unfortunately, few modertJ€kmplement sequential consistency.
Instead, each CPU architecture defines its own weaker forcomdistency, making it necessary
to use special memory barrier, or fence, instructions toosepspecific ordering constraints on
memory operations. A memory barrier instruction forcesradimory operations preceding it to be
committed before any following it. Hence, such instrucsialisrupt the CPU'’s pipeline.

Table 1 summarizes the memory ordering characteristicsrahge of modern CPU archi-
tectures. It shows that there are significant differencessacarchitectures, and that most allow
extensive reordering of instructions. The CPU names inmheses correspond to less-favored
modes of operation, for example, some x86 CPUs may be coafigorreorder stores, but since
most x86 software does not expect such reordering, theses @R rarely so configured. A “Y”
in a given cell indicates that the answer to the column’s tijoless “yes” for the row’s CPU. For
example, x86 CPUs permit loads to be reordered after subsétpads and stores, and stores to
be reordered after subsequent loads. However, x86 CPUs resweler stores, dependent loads,
or atomic instructions.

These weak consistency models impact synchronizatiotegtes in two ways: complexity
and performance. They increase complexity because theatnass of synchronization algo-
rithms, particularly those used in NBS strategies, depenitisally on the correct placement of
memory barrier instructions. This task is difficult and empoone. Their impact on performance
depends on the cost of memory barriers and the number requiitee cost of memory barriers
and other atomic instructions is addressed in the nextsecti

3.2 Instruction-Level Overhead

Table 2 quantifies the instruction-level overhead of a rapigsynchronization instructions on
two widely-used modern CPU architectures, the [Bteteon’ and the IBM POWER4. The
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<|| Atomic Instructions Reordered With Loads?
=<|| Atomic Instructions Reordered With Stores?

]| Loads Reordered After Stores?
<|| Stores Reordered After Stores?
=< || Dependent Loads Reordered?

Alpha

AMDG64

1A64
(PA-RISC)
PA-RISC CPUs
POWER
SPARC RMO
(SPARC PSO)
SPARC TSO
x86 Y|Y
(x8600Store) [ Y | Y | Y
zSeries

<
<

<| <] <| <|| Loads Reordered After Loads?
<| <| <| || Stores Reordered After Loads?

<|=<
<|=<

<|=<

<| <] <|<|<|<| =<

Table 1: Memory-Consistency Models

performance figures for each instruction are normalizedeabst of a regular instruction that hits
in the top-level cache, on each architecture.

Measuring overheads of single instructions on modern ssgaar microprocessors requires
extreme caré. The approach used to generate the results in Table 2 was suneemlong series
of instructions, but to execute them in a loop. For the firstsivs of the table, the loop overhead
was removed by subtracting the overhead of a loop contamgiiggle local non-atomic increment.
Compiler optimizations were disabled to ensure that the cmatrolling the loop was the same in
both cases.

The measurements shown in the last two rows of the tablenejaipair of CPUs alternately
writing to a cache line in a loop. In this case, the loop wasecsb that the instructions controlling
the loop executed concurrently with the movement of the edicte between the CPUs. In all
cases, the cache-line-movement latency exceeds the aekdfi¢he instructions controlling the
loop by orders of magnitude, so this approach yields aceuestults.

The first row measures the overhead of a no-operation inginjgroviding the best-case
instruction execution overhead. The overhead figures pteden all of the other rows are nor-
malized with respect to this value. The second row measureganic increment instruction.
This is simulated by an LL/SC sequence on POWER, which hagemiaincrement. Atomic

3For example, sampling a high-precision time source befodesdter the instruction will give wildly inaccurate reslt
due to instruction reordering by the CPU, in fact, negatiakies may be produced by such methods. Use of serializing
instructions that disable such reordering have overhesattseding, by orders of magnitude, that of the instructioimdpe
measured. It is possible to repeat the instruction to be unedsso that the error sources are amortized down to accept-
able levels, but this approach introduces cache-miss, i€, and page-fault overheads which again exceed thaeof th
instruction by orders of magnitude.
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Cost (Instructions)
1.45GHz| 3.06GHz
Operation POWER | Xeon
Instruction 1.0 1.0
Atomic Increment 183.1 402.3
SMP Write Memory Barrier 328.6 0.0
Read Memory Barrier 328.9 402.3
Write Memory Barrier 400.9 0.0
Local Lock Round Trip | 1057.5] 11388
CAS Cache Transfer and In- *247.1 847.1
validate
CAS Blind Cache Transfer | *257.1 993.9

* Varies with system topology, small-system value shown

Table 2: Synchronization Instruction Overhead

increment is used to implement concurrent counters andheiinux kernel, locking primitives.
The third row measures an SMP write memory barrier, which asta write barrier, but only on
SMP systems. It is implemented as@inei o instruction on POWER, and compiles to nothing
(not even a no-op) on x86.SMP write memory barriers are used in RCU algorithms to ensur
that data structures are perceived to have been initiaizéare they are linked into globally visi-
ble data structures. The fourth row measures a read memmighanplemented as drnwsync
instruction on POWER and an atomic increment on x86. The ffifth measures a write memory
barrier, which is async instruction on POWER and again compiles to nothing on x8@h Bloe
read and write barriers are used in the implementation dimgcprimitives, and when running
NBS algorithms on machines not featuring sequential ctetsiy® A write memory barrier is
distinguished from an SMP write memory barrier in that therfer must order writes to memory-
mapped 1/O registers as well as to normal memory. This auditiconstraint means that the
strongersync POWER memory barrier must be used in place of the weakei o instruction
that is used for the SMP write memory barrier. The sixth rovasuges the cost of a local lock
using a pair of LL/SC sequences on POWER, along withsync barrier for acquisition and an
ei ei o for release. On x86, the local lock uses CAS instructionscé&these instructions act as
memory barriers on x86, no additional memory barriers ageired.

The final two rows measure the cost of moving a cache line fram®©PU to another. The
first of these two rows reads the value, then uses that valaesubsequent CAS, while the last
row blindly? uses constant values for the CAS. On some systems theregsificsint difference
between these, due to interactions with the cache-cohemtocol [34].

The blind CAS (last row) is sometimes used for simple spiképavhere the lock variable
should be atomically changed to a constant “held” valuei¢blty 1), but only if this variable
previously contained a constant “not held” value (typigdl). The non-blind CAS (second-to-
last row) is used for almost all NBS operations, where a goiistupdated, but only if it has not
changed from its previous value.

The results show that synchronization instructions arg ggpensive on modern CPUs. Most
synchronization instructions cost between two and threersrof magnitude more than normal

4However, the SMP write barrier disables any compiler optations that would otherwise reorder code across the
barrier. That said, since we disabled optimization, thieafwas not visible in our testing.

5Locking primitives and NBS algorithms would normally beakb use the SMP variants of the memory barriers. The
non-SMP variants of the memory barriers tend to be used ircel@vrivers, in which device accesses must remain ordered
even on uniprocessor systems.

6That is, without first reading the variable’s earlier value.
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instructions. The factors that account for these costsid®instruction complexity, pipeline stalls,
memory latency, and CPU-to-CPU communication latencyh\pipelines becoming deeper and
memory hierarchies taller, these costs have become sigmifydarger over recent years.

When the cost of entering and leaving a critical section edsehe cost of executing the
code within the critical section, strategies such as readier locking will not scale even in
extreme read-mostly scenarios, because lock acquisitists evill prevent more than one reader
from executing concurrently. One way to understand theifsigmce of these costs is in terms of
critical section efficiency, or the number of normal instios required within a critical section
to amortize the cost of entering and leaving the criticatieac If critical section efficiency is low,
then performance will be poor even in the absence of lockerdiun.

3.3 Impact on Synchronization Strategies

This section explores the impact of synchronization irttom overhead on the performance and
scalability of various well-known synchronization stigitss. Our ultimate interest is the scalabil-
ity of synchronization strategies for operating systennkés. Therefore, we have constructed a
benchmark typical of that environment. This benchmark iste®f a mixed workload of hash-
table searches and updates, with the hash table stored aseateay of pointers, each of which
references the hash-chain list for the corresponding liudkee fraction of updates in the work-
load can be varied from zero (read-only) to one (updatejorhyd the size of the hash-table can
be varied to explore the impact of caching effects on thelt®su

Figures 2 and 3 show the performance of various synchraoizatrategies, evaluated using
the hash-table benchmark, on an 8-CPU 1.45 GHz POWER machireoverhead of synchro-
nization instructions on this CPU architecture is fairlpigal of today’s CPUs (see Section 3.2).
We evaluated five of the synchronization strategies desdriby Section 2: “globalrw” is global
reader-writer locking; “brlock” is per-CPU reader-writiexcking; “spinbkt” is per-bucket lock-
ing; “HPBR” (hazard-pointer based memory reclamation)as-blocking synchronization with
hazard pointers; and “RCU” is read-copy-update. “ldeafiresents the hypothetical optimal per-
formance in which hash-table accesses are performed vislgaghronization.

8 T

T
"ideal"

7L "RCU"
"HPBR"
"spinbkt" -
6 - "brlock”

"globalrw" ------ .

Searches per Unit Time Normalize to Ideal

Figure 2: Scalability of Synchronization Strategies
Figure 2 shows the scalability of the strategies using alaagsh-table and an update fraction

of zero. The hash-table size was chosen to significantlyezktige cache size of the machine.
Hence searches incur memory latency. We obtained simlthguagh more pronounced, results
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Figure 3: Performance of Synchronization Strategies deBnt Update Fractions (8 CPUS)

with hash-tables sized to fit entirely within first-level bac The update fraction of zero was
chosen to model extreme read-mostly scenarios, which anmenom in operating system kernels.
The relative performance of the strategies across the dnlje of update fractions is shown in
Figure 3.

Figure 2 shows, as expected, that globalrw scales negatiVélis is because the overhead
of lock acquisition exceeds the work in the critical sectiand hence prevents readers from ever
executing concurrently. Although brlock fares better it snly achieves around a third of the
ideal performance. Again, this is due to the overhead of bkuisition in the read path. A per-
bucket spinlock fares slightly better than does brlock, ttuthe poorer spatial cache locality of
brlock.” The strategies based on concurrent reading and deferrednation (RCU and HPBR)
fare much better, with RCU achieving close to the ideal pernce. This result is not particularly
surprising given that both strategies optimize the reatl patl these results were gathered on a
read-only workload.

Figure 3 shows the effect of varying the update fraction elorkload. This experiment was
run on 8 CPUs using a large hash table, running at most onadhmer CPU. The figure shows
that the synchronization strategies based on concurradimg and deferred reclamation (RCU
and HPBR) perform competitively with the others even whenwlorkload is update-dominated.
In light of these results, we focus our attention in the rerdar of this paper on these strategies.

4 Evaluation of Deferred-Reclamation-Based Synchronization Strategies

The RCU and HPBR strategies evaluated in the previous segtine based on implementations
already described in the literature. The RCU strategy usekibased update and quiescent-state-
based memory reclamation. This approach is used extepsiMble Linux kernel [34]. The HPBR
strategy used NBS update and hazard-pointer-based meedanration, following the imple-
mentation presented by Michael [42]. As noted earlier, h@reipdate strategy and reclamation
strategy are orthogonal choices. Hence, in this sectiomiveduce two additional synchroniza-
tion strategies. One uses an NBS update strategy and guietaée-based reclamation. We refer
to this strategy as RCU-NBS, in contrast to the lock-basetll R€ategy, which we refer to as
RCU-L. RCU-NBS is similar to the use of RCU for lock-free hdahles in the K42 kernel [34].
The other new strategy uses hazard-pointer-based reatamveith a lock-based update strategy.

“Note that the performance of brlock increases sharply coeia that of per-bucket spinlock in cases where the hash
tables are sized to fit entirely in first-level cache.
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We refer to this strategy as HPBR-L, in contrast to the NBSebaHPBR strategy which we refer
to as HPBR-NBS. These four strategies allow us to explorpdin®rmance implications of update
strategy and reclamation strategy independently.

However, it is important to note that our benchmarks usedticdtazard-pointer allocation
strategy. It is not clear that a static number of hazard poénwill suffice in the presence of inter-
rupts (or signal handlers), recursively defined data afrest nested data structures, and callback-
based programming techniques. Each of these considesatiigit necessitate an arbitrarily large
number of hazard pointers, forcing dynamic allocation afdrd pointers and attendant increases
in code complexity and degradation of read-side performanc

The following subsections compare the performance, sitityaland memory usage of these
strategies under various workloads. All experiments usehtish-table benchmark described in
Section 3.3 and were run on an 8-CPU 1.45GHz POWER4 systente Sin obvious cost of
deferred reclamation-based strategies is memory overfmgadonfigured all of the experiments
in Sections 4.1 and 4.2 to incur the same worst-case memasuagption. This was achieved in
the HPBR-based approaches by limiting the per-threadmeatian list size, and in the RCU-based
approaches by limiting the number of operations per quigsstate for each CPU. The impact of
different memory constraints and the memory usage chaistads of each strategy in extreme
cases are then discussed in Section 4.3. Next, Section dséms system-level performance
results. Finally, Section 4.5 presents a qualitative camepa of HPBR and RCU.

4.1 Impact of Memory Latency

Given the high overhead of synchronization instructionsraern CPUs, and the fact that this
overhead comes in part from the large disparity betweenecantd memory latency, it is natural to
expect the performance characteristics of synchroniaatiategies to differ between workloads
that always hit in first-level cache and those that go to mgmieor example, one would expect
synchronization instruction overhead to have more impaatorkloads that always hit in cache.
This section explores the impact of memory latency on théopmance and scalability of the four
strategies, by using two different workloads: one with alsimash-table, sized to fit entirely in
first-level cache, and another with a hash-table that is nargier than the cache. The results for
the small and large hash-tables are presented in Figured 8,arespectively. For both experi-
ments, an update fraction of zero was used to model extreatemmstly scenarios. The impact
of update fraction on the relative performance of the sffiateis discussed in the next section.

Searches per Unit Time Normalize to Ideal

Figure 4: RCU and HPBR Scalability When Working Set Fits irclkda
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Searches per Unit Time Normalize to Ideal

Figure 5: RCU and HPBR Scalability When Working Set Does NbitnFCache

The two graphs have been normalized to better show sc#jaltibwever, the absolute ideal
performance for searching a small hash table is a factor3ofirdes better than that for the large
hash table. This difference in performance is due to theeamed cache-miss rate for the large
hash table over that of the small hash table. Note that tiei®é@sed cache-miss rate affects the
ideal performance as well as that of each synchronizatiarthar@sm, so that differences between
these mechanisms are muted in the large-hash-table case.

In the small-table case, RCU-L has the best performandewietl by HPBR-NBS, RCU-NBS,
and HPBR-L, in that order. In the large-table case, RCU-Lirahas the best performance, fol-
lowed by HPBR-NBS, with RCU-NBS and HPBR-L having very ngdlle same performance. In
both cases, HPBR-L and HPBR-NBS are slowed by the memoriebsneeded to manage read-
side hazard-pointer manipulations on this weak-memonsistency machine, while RCU-NBS
and HPBR-NBS are slowed by the read-side checks neededIf§ thelates. As with many NBS
algorithms, such read-side helping is required to hanaiesaetween concurrent updates that can
leave elements partially removed from the list. The impdbredative performance of HPBR-NBS
in the large-table case is due to the CPU's ability to ovettephazard-pointer-induced memory-
barrier overhead with cache-miss latencies. However, gr@pnance differences between the
RCU-NBS, HPBR-L, and HPBR-NBS approaches is small enoudpe teensitive to minor varia-
tions in both the system hardware and the compiler.

4.2 Impact of Update Fraction

Since the four strategies differ in the way they distribwerbead between the read and update
path, it is interesting to evaluate their relative perfonce at different update fractions and to
identify the break-even points. Figure 6 presents the p@doce of the four strategies over the
full range of update fractions from zero (read-only) to omedate-only). The experiment was run
on an 8 CPU machine using the large hash table. Figure 7 gsabensame experiment run on a
2 CPU machine to determine the impact of varying the numb@nrifs.

Figure 6 shows that HPBR-NBS performs better than the othategies at all update fractions
above 0.1, and that RCU-NBS is the best-performing straaegjl update fractions below this (at
least those that are visible on this graph). Note howevet, iththe read-only cases shown in
Figures 4 and 5, RCU-L was the best performer. This resuls ieg question of what happens
at the read-mostly end of the spectrum, and where the break{goint is among the various
strategies. In order to answer this question, Figure 8 ptesezoomed in view of the relative
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Figure 6: Performance of Deferred-Reclamation-Basedesfies at Different Update Fractions
on 8 CPUs

performance of the four strategies between update fraxtb0 and 0.02. Note that while RCU-
L has the worst performance at all update fractions abov@10.i0 gains a significant advantage
as the update fraction decreases to Zeflthis is partially due to the fact that RCU-L's memory
reclamation has nothing to do given a read-only workload, partially due to the fact that we
have chosen a simple memory-reclamation algorithm thatuveesd on a two-CPU system. We do
not fully understand the slight increase in performancéefRCU-NBS, HPBR-NBS, and HPBR-
L algorithms with increasing values of update fraction ie #xtreme read-mostly regime. This
effect is most pronounced for RCU-NBS, and quite small foBRFL. We believe that this effect
is due to the ability of the super-scalar CPUs to overlap theate-side cache misses with read-
side operations. This overlapping would be expected to b& pronounced for RCU-NBS, since
there are no read-side memory barriers and only one updieremory barrier. RCU-L and
HPBR-L would be expected to show the least effect, since puate-side locking and memory
barriers incur the greatest increases in overhead witle@sing update fraction, and since the pair
of update-side memory barriers greatly limit the attaieadterlap. Needless to say, this sort of
effect is quite machine- and compiler-dependent.

For update-intensive workloads, the relative performategends on the number of CPUs,
with the RCU techniques enjoying a 2%-t0-13% advantage thescorresponding HPBR tech-
nigue at two CPUs, but with the HPBR techniques enjoying a a8¥%antage over the correspond-
ing RCU technique at eight CPUs. It is not yet clear whethetURGcaling can be improved to
match that of HPBR in update-intensive workloads, or whetiieBR has an inherent advantage
in this regime. The use of alternative implementations mulxi for 512-CPU SMP systems gives
reason to believe that RCU’s scalability can be improved that of this implementation.

4.3 Impact of Memory Constraints

Figure 9 shows the impact of varying the amount of extra mgmuoovided to RCU-L and HPBR-
NBS? Note that the y-axis is linear and the x-axis is logscale. f4ies of traces, from bottom to
top, correspond to 1, 2, 3, 4, 6, and 8 CPU configurationserisely. Each run was conducted

8However, there are numerous data structures in producfierating systems with update fractions beltv1°, for
example, data structures that track software and hardveanfggaration, including routing tables [38]. In routing e,
every packet transmission does a search, whereas updatesraed out only by rare routing-table changes.

9The memory consumed by RCU-NBS and HPBR-L is quite similah#t of RCU-L and HPBR-NBS, respectively.
For clarity, these additional traces were omitted.
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Figure 7: Performance of Deferred-Reclamation-Basedesfies at Different Update Fractions
on 2 CPUs

at an update fraction of 0.2, so that there was on averageadates every per ten operations. Of
each pair, the shorter curve corresponds to HPBR-NBS ardiiger to RCU-L. Both algorithms
are quite insensitive to memory constraints over a rangeoafi bne to three orders of magnitude.
Even outside of this “flat range”, the sensitivity of the aiffums is small compared to the effect
of cache misses or memory barriers.

One benefit that hazard-pointer-based designs derive fxmiicitly tracking readers’ refer-
ences is that data items can be actively reclaimed, for eblampder low-memory conditions. In
contrast, RCU-based designs are less able to activelyimeni@mory, since the only way to do so
is to cause each active thread to execute a quiescent stabtd, mvay not be possible.

4.4 System-Level Impact

Measuring the system-level performance impact of defereethmation-based synchronization
strategies requires very extensive kernel modificationsthermore, the complexity of the ker-

nel environment makes it extremely difficult to constructamiegful side-by-side comparisons,
at this level, of the various approaches presented ealtieriew of these obstacles, this section
focusses on one specific strategy, RCU-L, to illustrate yfstesn-level performance impact of
deferred reclamation-based synchronization. Specificak analyse the use of RCU-L in the
implementation of the System-V IPC subsystem in the Linuxi&k and we also report on Mor-

ris’'s and Kohei's work applying RCU to the Security-Enhashténux (SELinux) access vector

cache (AVC). In both cases we show system- and applicatieel-performance implications of

the approach. Further system-level examples are discussetail in [36].

441 System-V IPC

The System-V IPC subsystem implements System V semaphoesssage queues and shared
memory. Applications access these resources using aremiiegand the Linux kernel uses an
array to map from this ID to in-kernel data structures thatesent the corresponding resource.
The array is expandable, and prior to the conversion to udd-RGvas protected by a spinlock.
The array is frequently accessed read-only when Systent\blijects are used, and infrequently
accessed for writing when objects are created or deleteleoatray is resized. Because each
element of the array is a single aligned pointer, objectt@yeand deletion events may be done in
place, hence the array need only be copied for expansions.
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Figure 8: Relative Performance of Deferred-Reclamatiasesl Strategies in Read-Mostly Sce-
narios (8 CPUs)

Kernel Runl| Run2| Avg
2.5.42-mm2 515.1| 515.4| 515.3
2.5.42-mm2+ipc-rcy 46.7| 46.7| 46.7

Table 3: semopbench Application-Level Results (seconds)

Two experiments were used to compare the performance of ithex12.5.42-mm2 kernel,
with and without RCU-L. The first experiment used a Systenemaphore user-level benchmark
on an 8-CPU 700MHz Intel PIll system. In this benchmark, ipldtuser-level processes each
repeatedly acquire and release different semaphoresatigdawith the benchmark metric being
the length of time for each process to complete a fixed numbsuah operations. The second
experiment used the DBTL1 [45] database-webserver ben&homaan Intel dual-CPU 900MHz
Pl with 256MB of memory. The results of the first experimarg shown in Table 3, and illustrate
an order-of-magnitude increase in performance for this-lesel benchmark. The raw results for
the second experimentare presented in Figure 10, with a smyrpresented in Table 4. The results
show that the RCU-based kernel performs over 5% better timatock kernel for this workload.
The erratic results for the stock kernel are not unusual fanki@ads with lock contention.

442 SELinux AVC

The SELinux AVC caches complex permissions checks, so tequéntly checked security poli-
cies need not be interpreted on a per-access Bagscause security policies are changed quite
infrequently, the AVC is an intensely read-only data stwoetthat is accessed very frequently.

10see Morris's writeup [43] for more details on AVC and its merhance.

Kernel Average| Standard

Deviation
2.5.42-mm2 85.0 7.5
2.5.42-mm2+ipc-rcy 89.8 1.0

Table 4: DBT1 Database Benchmark Results (TPS)
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Bandwidth (MB/s)

Kernel SELINUX=0 | SELINUX=1
2.6.9-1.648EL 6159.987 5872.529
2.6.9-1.68%vcrcu.root 8829.647 8817.117

Table 5;: STREAM Benchmark Results (MB/s)

The initial AVC implementation was protected by a singlelgblock, which resulted in severe
performance degradation and poor scalability.

When attempts to improve AVC performance and scalabililggistandard techniques such as
reader-writer locks or per-CPU partitioning proved to bsatisfactory, Morris and Kohei turned
to RCU. AVC accesses are protected by RCU, while AVC updatestdl protected by a global
lock.

Kohei used the STREAM and dbench benchmarks to compare R@forpance to that of
the original code. The STREAM benchmark was run on a 4-nod€RB NUMA system, and
use of RCU improved overall performance as well as greatlyeang the performance penalty
incurred by SELinux access validation, as shown in Tablen3hik table, the first row shows the
performance of an SELinux kernel that implements AVC withl@bgl lock, first with SELinux
functionality disabled, and second with it enabled. Theosdcrow shows the corresponding
data for an SELinux kernel that uses RCU to protect AVC. Incales, use of RCU increases
performance and decreases the performance penalty idduwynese of AVC.

The dbench benchmark was run on a 32-CPU 1A64 system with .8 Ri6ux kernel, the
results of which are shown in Table 6. Each row shows the padace for a given number of
CPUs for a kernel with SELinux disabled (“Disabled”), witlobally locked SELinux enabled
(“Enabled”), and with RCU-based SELinux enabled (“EnaklREU"). There is a significant
penalty for access validation, as can be seen by compasri@ibabled” and the “Enabled+RCU”
columns, but the use of RCU results in linear scaling, in @sttto the globally locked results in
the “Enabled” column.

The overhead of access validation is more noticeable inalb#ran in STREAM due to the
greater I/O intensity of dbench, however, on larger numibéiSPUs, RCU provides multiple
orders of magnitude increase in performance over globé&irgc
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Figure 10: DBT1 Database Benchmark Raw Results

Bandwidth (MB/s)
CPUs | Disabled| Enabled| Enabled+RCU
1 773.6 535.8 542.5
2 1611.4 655.8 1042.9
4 3160.5 241.8 2301.6
8 6301.0 127.7 4518.0
16 | 12605.0 62.9 8963.5
32| 24296.4 30.2 18033.6

Table 6: Linux 2.6.9 Kernel dbench Benchmark Results (MB/s)
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443 System-Level Impact Summary

In both cases, the results show that deferred destrucseebsynchronization strategies can have
a significant impact on performance at the system-call amdicgtion level. In the System-V
IPC example, introduction of RCU resulted in an order-ofgmtude performance increase at the
system-call level and more than a 5% increase in throughpatteansaction-processing database
benchmark. In the SELinux AVC example, introduction of R@&dulted in almost three orders of
magnitude increase in performance on the dbench benchmax8a-CPU system.

45 Qualitative Evaluation

This section discusses the less easily quantifiable clearstiats of the update strategy, the recla-
mation strategy, and the consequent synchronization eaerim read-side critical sections.

45.1 Update Strategy

A number of well-known problems are commonly associatedh Witking, including deadlock,
lock contention, convoys, blocking due to page faults, kileg due to preemption, lockup due
to thread failure, and the high overhead of synchronizatistructions. While these problems
have not been entirely solved, many have partial solutibas are heavily used in production
systems. For example, good engineering practices andhawtssignificantly reduced the likeli-
hood of deadlock [4, 12, 25, 33]. The synchronization stjiagedescribed earlier, in Section 2,
reduce lock contention. Convoys and blocking due to preemgan be avoided through tighter
integration of scheduling and locking [28], and blockingedo page faults can be addressed by
over-provisioning memory, which is particularly attraetigiven the ever-increasing size and de-
clining cost of memory. In production systems, thread failypically results in system or applica-
tion failure, largely because most failure mechanismsinillice secondary failures, for example,
due to memory corruption induced during the failure. Thrdathys are typically addressed us-
ing mechanisms similar to scheduler-conscious synchatiniz [28] to address preemption and
by overprovisioning memory to reduce the incidence of pagdts. The high overhead of syn-
chronization instructions remains a problem, but only fpdate-intensive scenarios, since the
synchronization strategies discussed in this paper remuske instructions from the read path.

NBS can reduce the cost of synchronization instructionpuhate-intensive scenarios. In fact,
the results presented earlier showed that NBS performs 8p%obetter than locking for update-
intensive workloads. However, these results should beaegplith caution, since they were gath-
ered using a benchmark for which an efficient NBS impleménagxists. NBS also solves the
problems of deadlock, contention, blocking due to page$ablocking due to preemption, and
lockup due to thread failures, but it does so at the experisei@ased code complexity, more diffi-
cult integration with legacy code, and increased memoryestion. Recent work on obstruction-
free synchronization sidesteps livelock and memory cditterissues in the same manner that
locking practitioners have done, namely by requiring that €ngineering design maintain low
contention. There has also been recent work aimed at reglif% complexity [11, 21], but it
remains to be seen how effective these approaches are.rdtibegwith legacy code is still an
open issue. NBS algorithms have been successfully inegyraith legacy code, but there has
been little work on incrementally migrating a large body ofle from locking to NBS. In contrast,
lock-based RCU strategies have been incrementally inisgjiato at least four major operating
systems, three of which have seen extensive production use.

45.2 Reclamation Strategy

Reclamation schemes based on hazard pointers explicjlyHftaspecific data items that are being
referenced by readers. Therefore, they can actively racdlimemory that is not so referenced.
In contrast, reclamation strategies based on quiescertgia not maintain explicit lists of ref-

erenced data items, and hence must make more conservaiva@sns about which data items
might be referenced. These conservative assumptions tayntte reclamation of large amounts
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of memory. Therefore, hazard-pointer-based approaches $raaller memory footprints than
guiescent-state-based approaches.

The reclamation strategies differ not only in their abilityeagerly and accurately reclaim
memory, but also in their internal use of memory. For examiehazard-pointer-based ap-
proaches, memory must be allocated for the hazard poirtersgelves. The hash-table bench-
mark used in the experiments presented earlier requirgstwolhazard pointers per thread, and
these can be allocated statically. However, static allooaif hazard pointers is not practical for
more complex applications, which may feature nested dedatstes (e.g., lists of lists, trees, or
graphs) and recursive searches, either of which can reqtliigrarily large numbers of hazard
pointers. The API proposed by Herlihy [21] permits dynamioaation of hazard pointers, but
such dynamic allocation requires a mechanism for freeifgchvimposes an additional burden
on programmers in environments that lack a garbage cotléttio addition, dynamic allocation
raises the question of how to handle allocation failure. @mndd simply block until memory be-
comes available, which limits performance and robustr@sme could return a failure indication.
Failure indications place yet another burden on the programwho must either preallocate all
the hazard pointers that might be needed for a given operatiomust carefully code unwind
paths that recover from allocation failure. In contrasicei quiescent-state-based approaches do
not explicitly track referenced memory blocks, they do ne¢ato do any read-side memory allo-
cation.

Another complication with hazard-pointer-based reclanmegchemes is their handling of data
structures with variable length aggregates of other dat@tsires. These cases present a problem
because they allow different references to different pogiof the same data item. Simple com-
parisons of hazard pointers do not detect these conflicteamdesult in premature reclamation.
To solve these problems, hazard-pointer-based schemdsaneay to map from a reference to a
portion of a data item to a canonical reference for that data.i This requirement places con-
straints on the implementation of the environment’'s menadigcators, and can be expected to
increase cost and complexity. Such reference mapping iset®ssary in quiescent-state-based
approaches that do not explicitly track referenced memhmgis.

The main price paid by quiescent-state-based schemesdse #dvantages, apart from the
memory overhead, is the need for environmental support fmintaining quiescent state infor-
mation. The degree to which these approaches can be sudagsgénds on the availability of
quiescent states in the environment, their type, and thlguéecy with which they occur. These
factors are environment-specific.

In principle, hazard-pointer-based approaches shoudd tiffhter control over latency in real-
time systems, since the use of hazard pointers enables ptieenof read-side critical sections
without affecting reclamation of data items that are notcdjmlly referenced by the preempted
thread. In contrast, most quiescent-state-based apmsatibable preemption across read-side
critical sections, with the notable exception of the K42 rgpiag system and recent realtime-
friendly RCU implementations for the Linux kernel [36]. K4&rmits preemption by exclud-
ing involuntary context switch from its set of quiescentts$a Since the choice of quiescent
states affects both overhead and memory footprint, thera aange of potential design points for
guiescent-state-based approaches that trade real-tiftgrpance, memory overhead, and scala-
bility in different ways. Again, the available design chescare environment-specific.

45.3 Read-Side Machine Operations

Table 7 gives a qualitative comparison of the read-sidetmamt of locking, “classic NBS” (NBS
prior to HPBR), HPBR, and RCU. RCU has two rows, the first foggmptive environments,
in which RCU read-side critical sections must suppressmptien, and the second for non-
preemptive environments, where such suppression is uss@ge Cells marked “Y” indicate

1INote that environmentsith garbage collectors already have built-in reclamation,thetefore have no need for either
RCU or HPBR.
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that the corresponding operation is required, while cebisked with “(y)” require a lightweight
version of the corresponding operation.

Read-Side Operations
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HPBR MIY|Y Y
Y

RCU (preemptive)
RCU (non-preemptive

Table 7: Read-Side Operation

HPBR represents a substantial advance over classic NBSidgetlhe cache misses are due
to hazard-pointer writes that are accessed primarily byhtmard pointer's owner. RCU takes
this further, since in a preemptive environment, it marapes a strictly local counter to suppress
preemption, while the a non-preemptive environment foumddme operating-system kernels,
readers need execute no read-side instructions at all.

We term synchronization algorithms that incur no overheahflocks, communications cache
misses, atomic instructions, and memory barriesti@amlined From the table, RCU's read-side
primitives are streamlined.

5 Impact of Future Trends

The synchronization developments discussed in this pagpereed in response to developments
in CPU architecture. The evolution of CPU architecture igaing, and unpredictable. In this
section we speculate on six possible future trends in CPbitacture and consider the impact
they would have on the synchronization techniques discusadier.

In considering these trends, it is important to keep systeitecture in mind, as depicted in
Figure 11. Each hardware thread has its own set of registersnay share most other hardware
resources with the other thread(s) in the core. Each cone &eztrically separate CPU, usually
having its own cache hierarchy, though it may share a largele with the other cores on its die.
Each die is a single piece of silicon, perhaps attachedttireeca motherboard, or perhaps instead
attached to a multi-chip module (MCM) along with other digBCMs can often be interconnected
to form a larger system.

The figure shows two threads per core, two cores per die, and,dwowever, the numbers of
units at each level of the hierarchy can vary, and in smajlsiesns, some levels of the hierarchy
may be omitted. For example, desktop-class systems wilhoohally feature MCMs, but will
rather attach each die directly to the motherboard. Howeeeent trends have been increasing
the numbers of units throughout the hierarchy, witness dvert of multithreaded (AKA “hyper-
threaded” or “simultaneous multithreaded”) CPUs, as wehnalti-core dies.

The key point to keep in mind is that the greater the eledtdisdance, the greater the latency.
For example, a pair of hardware threads in the same core esalthnge cache lines with much
lower latency than could threads in different MCMs.

Trend 1: Single-threaded uniprocessors

If the combination of Moore’s-Law increases in CPU clockerand continued progress in
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Figure 11: Threads, Cores, Dies, MCMs, and Systems

horizontally scaled computing render shared-memory praltiessor systems irrelevant, synchro-
nization instructions on the resulting uniprocessor systevill not suffer the cache-thrashing,
contention, and memory barrier overheads of today’s systdmthis scenario, synchronization
techniques that use deferred reclamation to avoid thesédneads in the read-path will become
less relevant, and their use may only continue for nicheiegipbns such as interacting with non-
maskable interrupts. However, recent trends indicatetitfimscenario is quite unlikely.

Trend 2: Multi-threaded uniprocessors

Current hardware multithreadikgrends may lead to a predominance of uniprocessor systems
that are aggressively multithreaded with hardware-supgdhreads sharing all levels of the cache
hierarchy. In this scenario, CPU-to-CPU communicatioeray is eliminated and the perfor-
mance penalty for synchronization instructions is redud¢s¢alvever, multithreaded CPUs would
still incur overhead due to contention and pipeline stadissed by memory barriers. Furthermore,
if all hardware threads share all levels of cache, the cactezference among threads may de-
grade performance. On the other hand, partitioning sonedd@f cache on a per-hardware-thread
basis re-introduces memory latency for cachelines thapassed from one thread to another. In
both cases, synchronization approaches that use defeakagiration to avoid both contention and
pipeline stalls are likely to be useful. It remains to be sedat performance impact shared or
partitioned caches will have on the grace-period manageahgorithms used by such approaches.

Trend 3: Single-chip multiprocessors

The performance advantages of single-chip multiprocesguoore recently called dual- or
multi-core dies) over super-scalar single CPUs with theesahip area were demonstrated in the
mid-1990s [44], and have recently appeared in commerciél 6fferings and announcements.
These performance advantages are due to the limited ambimgtniction-level parallelism in
typical software.

However, use of multiple cores is not a panacea, since gegatraust be taken to provide
sufficient cache as well as memory and 1/O bandwidth, otherythe multiple CPUs will simply

12Hardware multithreading is often called “’hyperthreadimy “simultaneous multithreading” (SMT) in commercial
products.
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stall waiting for data to flow on- and off-chip. Neverthelglsgencies among CPUs on the same

chip are quite good compared to inter-chip latencies. Itaiesto be seen what performance

characteristics are offered by future single-chip muttgassors, and what the consequent effect
on the performance of memory-reclamation algorithms wéll b

In this scenario, synchronization instructions remaineggive due to pipeline stalls. Although
the memory-latency cost of CPU-to-CPU communication walkblatively small among CPUs on
the same chip, it will still be quite expensive compared tonmal instruction execution overhead.

Trend 4: Growing memory latency

If memory latency continues to grow relative to instructerecution overhead, this will in-
crease the benefit of avoiding synchronization instrustitt will also increase the cost of man-
aging deferred-reclamation-based synchronization meshes. On the other hand, the deferred-
reclamation benefit of avoiding synchronization instroies will exceed the increased costs of
memory latency, provided that the deferred-reclamationhrarisms amortize their cost over a
sufficiently large number of accesses.

However, it is not clear that this decades-long trend wilitimue. To see this, consider that
1GHz CPUs first appeared in about 2000. If CPU clock frequesritad continued the earlier trend
of doubling every 18 months, they would have approached Z0iGR005. Instead, as of 2005,
they have yet to exceed 5GHz in absence of heroic measures,asuliquid-nitrogen cooling.
Furthermore, a number of technology trends, such as ineddaakage current and decreased tol-
erance for excessive power dissipation, seem likely ta fimture clock-frequency increases. This
slowing rate of clock-frequency increase seems likely t #e historic trend of ever-increasing
memory latencies, leading to Trend 5.

Trend 5: More of the same

Finally, if increases in interconnect performance matctohés-Law-driven increases in core
CPU performance, memory latencies may remain roughly wihengare today. In this scenario,
overhead due to pipeline stalls, memory latency, and ctintenemains significant, hence syn-
chronization approaches that use deferred reclamatidrret@in the high level of applicability
they enjoy today. This scenario seems quite probable, ghatnCPU-clock frequencies seem to
have levelled off in the early 2000s.

Trend 6: Transactional memory

Transactional memory has received much attention by oggaisearch in hardware support
for speculative execution and transactional memory [2943048]. This research leverages the
speculative-execution facilities present in many CPUsxecate transactions that either commit
or abort atomically. Committing is handled like successiugculation, with results being com-
mitted to memory or registers, whereas aborting is treakedfdiled speculative execution, with
the results being discarded. Essentially, such hardwaresdctions act like an atomic N-way
compare-and-swap instruction, with the complexity of ttensaction limited by the amount of
speculative state that can be stored. Speculative staterexisn the CPU’s cache, but specially
marked so that it will not be committed to memory unless thegaction commits. Since CPU
caches can be large, this approach suggests that extreangdyttansactions could be supported.
Unfortunately, the associativity limits of hardware cagkeverely limit the maximum guaranteed-
to-commit transaction size, and the tension between atatesgy and associativity discourages
large increases in associativity.

To see the reason for this limit, consider a hardware trdiwsainvolving three variables in a
two-way set-associative cache. If all three variables anfle., collide in the cache, this trans-
action will always fail, since this two-way set-associatéache will be able to accommodate only
two of the three variables. Similarly, a pair of concurreansactions might conflict with each
other, so that they can never complete when running conatlyre

It is possible to increase the associativity of the cachap@dd a small high-associativity
“victim cache” [17], but doing either increases the costaftache (or, for constant cost, decreases
its size) and degrades its performance. Hardware transactiold much promise, but, given
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associativity limits, they are no panacea.

Trend summary

In our opinion, it appears that the future lies with trend3,nd 5, in other words, with multi-
core, multi-threaded CPUs that have roughly the samevelatist of synchronization that is seen
today. These trends will become especially prominent if @Rid¢k-frequency growth remains
low, since in that case, the only way to increase performasde increase parallelism, either
through addition of general-purpose processors or thraaglition of hardware accelerators or
vector units. As is the case today, smaller systems willyelgaer costs of synchronization, all
else being equal.

6 Conclusionsand Future Work

This paper has shown that synchronization instructions odam CPUs are very expensive, in
some cases costing over a thousand times more than norrmatiitns. To make matters worse,
weak memory consistency models require additional instras, in the form of memory barriers,
to be added to synchronization algorithms on most CPUs. elto@scan be expensive, costing sev-
eral hundred times more than normal instructions. Thisuiesibn-level overhead has dramatically
decreased critical section efficiency, causing some fdynsealable synchronization strategies to
perform very poorly on today’s CPUs.

Synchronization solutions that use a copy-based updat®app, with deferred reclamation
and synchronization-free concurrent reading, scale mettebthan other strategies on modern
CPUs given the read-mostly workloads common in operatirsesn kernels. They also offer a
range of design decisions relating to the specific updateagement and reclamation strategy to
use. The choice of locking vs. non-blocking synchronizafar managing updates is orthogonal
to the choice of reclamation strategy, and we examined tHfenpeance characteristics of four dif-
ferent combinations of update and reclamation strategg. rébults showed that in extreme read-
mostly scenarios, of which there are many in production &stna combination of lock-based
update strategy and quiescent-state-based reclamataiaggt performs the best. Reclamation
strategies based on hazard pointers suffer degraded perfioe in read-mostly conditions due to
the need for expensive memory barriers in the read-pathséelperformance differences become
more pronounced as the working set size decreases and the-lcicate increases. As the per-
centage of updates in the workload increases, NBS-basextaiptlategies became more efficient
than lock-based strategies, due in part to decreased lot&miion and to the existence of efficient
NBS algorithms for the simple data structures studied i plaiper.

At smaller numbers of CPUs, reclamation strategies baseghi@scent states performed well,
but as the number of CPUs increases, so does the cost of mgrggescent states, pointing to
the need for scalable algorithms for quiescent state mamagie None of the strategies exhib-
ited any performance sensitivity to variations in avaiaflemory. However, for extremely tight
memory constraints, such as in embedded systems, rectamsaitategies based on hazard point-
ers offer tighter control over memory consumption than ¢hioased on quiescent states. Finally,
we argued that the relative performance of these synchabaizstrategies is dependent on future
architectural trends.

6.1 FutureWork

All four algorithms studied in this paper expose readerhopossibility of observing stale data
items. A data item is stale if it has been removed but not yelammed. A surprisingly large

number of operating system algorithms tolerate stale @eta&xemplified by the more than 400
uses of the RCU API in the Linux kernel. However, there are yrelgorithms that cannot tol-

erate stale data. One strategy for dealing with such algustis to transform them into a form
that can tolerate stale data before applying this classmaftapnization solutions. Several exam-
ples of such transformational design patterns are presémi@4]. However, a number of open
guestions remain. For example, (1) are there algorithnisctranot be so transformed, (2) which
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algorithms, when so transformed, remain efficient, (3) &¢ha “best” set of transformations, or
are different transformations appropriate for differentations, and (4) do the currently identified
transformations form a complete set, or are there others?

Deferred-reclamation-based synchronization algoritarasufficiently differentin nature from
traditional locking and NBS algorithms that new formaliswii be required to validate and an-
alyze them. lIdeally, these formalisms will form the basisdoset of software tools that aid in
the analysis and verification of deferred-reclamatioredasgorithms, as well as the analysis and
verification of the deferred-reclamation-based infradttrte itself. Similarly, tools are needed to
aid in the adaptation of legacy code to these scalable sgnidation approaches.

Another challenge for deferred-reclamation-based ampres particularly those based on
guiescent-state-based reclamation, is the need to ddateat-time workloads. In embedded sys-
tems this challenge often goes hand in hand with the needchtanrder tight memory constraints.
Together, these two requirements point to the need for efficctive reclamation strategies.
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